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Preface

The rational resolution analysis introduced in this thesis is a very small part of the

revolutionary mathematical theory of wavelets. The rational resolution analysis synthe-

sizes the work of Mallat, Daubechies, and Vaidyanathan to present a multiresolution-like

analysis which is based on rational dilation factors. It presents a framework within which

the multiresolution and integer-resolution analyses exist.
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Abstract

The multiresolution analysis (MRA) developed by Mallat and Meyer and further

discussed by Daubechies is a useful tool in the analysis of sampled signals such as images

and speech. This thesis develops the theory and implementation of a rational-resolution

analysis (RRA) as an extension of the dyadic MRA for arbitrary ational dilation fac-

tors. We present a method to calculate families of compactly-supported scaling func-

tions and wavelets based on arbitrary integer dilation factors and provide examples. The

perfect-reconstruction properties of the RRA are discussed and it is demonstrated that the

compactly-supported scaling functions and wavelets do not yield perfect-reconstruction.

However, the approximate-reconstruction is demonstrated and families of basis functions

which do lead to perfect reconstruction are characterized. Finally, comparisons are made

between RRAs and conventional MRAs and illustrated with speech signals.

xii



Theory and Implementation of Wavelet Analyses

in Rational Resolution Decompositions

L Introduction

1.1 Background

In recent years a revolutionary mathematical theory, that of wavelets, has emerged

and promises to significantly change the face of information processing as it exists today.

The theory of wavelets was pioneered by French geophysicist Jean Morlet in the early

part of the previous decade as a tool to aid in the signal processing associated with oil

exploration. Most practical uses of wavelets in recent years have been based on the work

of Stephane Mallat of the Courant Institute. His "multiresolution analysis" provides an

efficient mathematical framework for decomposing discrete-time signals at various reso-

lution levels. Multiresolution analyses have begun to take their place beside traditional

Fourier techniques as tools in the world of information processing. From these beginnings.

wavelets, and multiresolution analyses in particular, have spread to the areas of image

processing, pattern recognition, speech processing, information coding, and a myriad of

others. While the applications are far reaching in scope, we believe the potential of the

theory has yet to be realized.

1.2 Problem Statement

A multiresolution analysis (MRA) is a technique wherein a signal is decomposed into

successive approximations. It is related to resolution in the sense that each approximation

represents the signal "seen" at a particular resolution. The dilation factor associated

with an MRA determines the ratio between the resolutions of adjacent approximations.

I-1



Currently, most multiresolution analyses are implemented with dilation factors of 2. The

theory of MRAs with other integer and rational dilation factors is also well known[8],

though these are not commonly seen in implementation. The desire for a rational resolution

analysis (RRA) in which the dilation factor is a non-integer rational number has become

apparent in the past decade to aid in the processing of biologically motivated data. For

instance, it is now well known that the human ear processes frequency on a logarithmic

scale[18]. Although MRAs have a logarithmic frequency interpretation, the RRA may

allow the spectrum to be divided into bands which correspond better to those effectively

used by the human ear.

This thesis will present a theory of multiresolution analyses based on arbitrary integer

and rational dilation factors. Practical implementations of the rational resolution theory

will be designed. A comparison of the rational resolution analysis and the dyadic MRA

will be made and demonstrated on representative test signals as well as real-world speech

signals.

1.3 Scopc

This thesis is limited to the following:

1. A brief description of the mathematical theory of wavelets and multiresolution anal-

yses.

2. A development of integer resolution and rational resolution analysis theory.

3. A description of the implementation of integer and rational resolution analyses. This

includes a description of scaling functions and wavelets.

4. Development of the tools (design methodology, software, etc...) necessary to imple-

ment integer and rational resolution analyses.

1-2



5. A comparison between rational and dyadic resolution analyses to demonstrate the

features of the RRA.

1.4 Approach/Methodology

The RRA will be developed as an extension of the integer resolution analysis. The

integer resolution analysis is presented as a synthesis of the current state of the art in

compactly supported scaling functions and wavelets, dyadic MRAs, and multirate signal

processing. Once the RRA is developed and implemented, we will demonstrate its use by

comparing it to the dyadic case over a range of test signals including human speech.

1.5 Objectives

The four specific objectives of this research are to answer the following questions:

1. Can the theory of dyadic multiresolution analyses be extended for arbitrary integer

dilation factors?

2. Can the theory of multiresolution analyses for arbitrary rational dilation factors be

developed? Are there any limitations on its implementation?

3. Is the implementation of the rational resolution theory feasible and is it applicable

to real-world problems?

4. How does the rational resolution case compare to that of the dyadic? How do they

contrast?

1.6 Equipment and Materials

Being mostly theoretical in nature, this thesis requires no special materials or equip-

ment. SPARC 2 workstations are used to support general purpose programming. More

specifically, ITEX is used to typeset this document. Mathematica is used for numeric
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calculations and to generate some of the figures and plots. Gnuplot is also used for some

plots. Matlab is used for optimization and minimization. Finally, all general programming

is done in the ANSI C programming language.

1. 7 Notation

We use the following notation throughout this thesis:

* C for the set of complex nuiabers.

* Z for the set of integers.

e Z+ for the set of non-negative integers.

* R for the set of real numbers.

* Q for the set of rational numbers.

* L2(R) for the space of measurable, square-integrable functions:

L 2(R) = {f : f is Lebesgue-measureable and If(x)12dx < oc}.

If f E L 2(R), f is sometimes referred to as a finite-energy function.

The inner product of f,g E L2 (R) will be denoted by

(f,g) = I f(x)g*(x)dx,

where the asterisk represents complex conjugation.

12(Z) for the space of square-summable sequences:

+00

12(Z) = a = ( a.... 1,ao,a,,...) : ak E C, E lak12 < or}

For matrices and operators A, we use the following notation:

1-4



e A = [a(i,j)]?, defines a matrix A whose element in the i-th row and j-th column is

given by a(i,j), where a is a function on Z+ x ZV.

e AT for the transpose of the matrix A.

* A* for the complex conjugate of A. The asterisk will also be used to denote the

adjoint operator. The distinction between matrices and operators will be clear from

the context.

a A t for the transposed conjugate of A.

* Hf(z) denotes HT(Z-1).

@ E, will denote the sum over all n E Z unless specific limits are given.

* The Fourier transform of f will be denoted by either f or F. It is defined as 1(]) =

f-'I f(r)f-i 2,,'dx for f E L2(R) and as fk = fc- k"l for f E 12(Z).

1.8 Previ iW

This thesis is organized as follows: the next chapter presents background material on

wavelets and scaling functions, multiresolution analyses, perfect reconstruction multirate

filter banks, and rational resolution approximations. While not intended as a tutorial,

it will provide a working understanding of the concepts needed to understand integer

and rational resolution analyses. It will describe the current state of rational resolution

approximations in the literature.

The following chapter presents a development of compactly-supported scaling func-

tions and wavelets based on arbitrary integer dilation factors. It is presented as an exten-

sion of the work by I. Daubechies[6] and P.P. Vaidyanathan[26]. It will also discuss the

generation of spline-based scaling functions.

In Chapter IV, we present a design for a rational resolution analysis for which we

can get perfect reconstruction under certain conditions. We develop the approximation

1-5



and reconstruction operations and discuss the role of the scaling function. We conclude

the chapter with a discussion of the frequency domain characteristics of the RRA.

Chapter V presents a comparison of the rational resolution analysis to the dyadic

multiresolution analysis. Comparisons to the dyadic case are demonstrated in several

examples including human speech signals.

We conclude the thesis with a summary of its major points and accomplishments.

We draw some conclusions and, of course, make recommendations for future research.

The appendices contain useful information on the techniques used to calculate various

numerical values. They also contain scaling function coefficients and the corresponding

scaling function graphs.
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H. Background

2.1 Introduction

This chapter serves two purposes. First, it is intended to provide background material

for the development of the rational resolution analysis and second, it provides a literature

review for the many topics discussed later. While not intended as a tutorial, the background

material will be discussed in enough detail to give the reader a reasonable understanding

of the development.

The chapter is outlined as follows: we first discuss the early beginnings of wavelet

analysis, its mathematical foundations, and the continuous wavelet transform. From there

we describe the discrete wavelet transform and present the multiresolution analysis. We

also discuss compactly supported scaling functions and wavelets. Next, we turn to discrete-

time signal processing and its relationship to the multiresolution analysis. This is followed

by a description of multirate filter banks and how they are related to integer resolution

analyses. Finally, we review the current state of the art for rational resolution analyses.

We present the work of two individuals whose research in this area is most applicable.

2.2 Mathematical Foundations of W.avelEts

Wavelet theory has a short but rich history. In 1984, Alexander Grossman and Jean

Morlet[9] showed that any finite energy function could be decomposed into families of

constant-shape wavelets. For f E L 2 (R) the continuous wavelet transform is

(WfV)(a, b) = f(t)¢',b(t)dt, (2.1)

where

a-,b1 = 11 2 j.;, (t ) (2.2)
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and the "mother wavelet" 11' is subject to

j I•L-I1'(•)I 2dý < co. (2.3)
00

These wavelets are so called because they generally have some oscillatory behavior since

Equation 2.3 implies they are zero-mean functions and decay at infinity. These families of

wavelets are formed by dilations and translations of the mother wavelet. Morlet was trying

to develop a method by which lie could analyze non-stationary seismic signals. Fourier

analysis was inadequate because of its inability to localize frequencies in time[5] [10]. The

short-time Fourier transform (STFT) is only a little better because its time localization

properties are poor[19J. The fundamental difference between the STFT and the wavelet

transform can be understood in the frequency domain. The STFT effectively divides the

frequency spectrum into equal-bandwidth regions while the wavelet transform divides the

spectrum into bands which have a constant bandwidth on a logarithmic frequency scale.

That is, the wavelet transform uses a small bandwidth for low frequencies and a larger

bandwidth for higher frequencies. This is equivalent to having a STFT with a variable

sized window, a small window for good time resolution and a large window for good

frequency resolution.

'We can also describe the continuous wavelet transform by considering the wavelets as

basis functions. Equation 2.1 is an inner product which effectively measures the similarity

between f and the particular wavelet iy,b. While the wavelets are a basis for L2(R), they

are not orthogonal and they redundantly represent the signal. However, by discretizing

the values of the shift and scale parameters in Equation 2.1, we can define an orthonormal

set of wavelets. If we let a = a' and b = nboa' for m,n E Z, then we can find an

orthonormal wavelet basis for some choice of a0 and b0 provided certain conditions on V,

are met[7][14][191. The choice most commonly made is for a0 = 2 and bo = 1; ao is known

as the dilation factor.
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2.3 Multiresolution Analyses

The discretization of the continuous wavelet transform and the generation of mother

wavelets whose dilations and integer translations form an orthonormal basis of L2(R) nat-

urally leads to the multiresolution analysis (MRA). The multiresolution analysis developed

by Mallat[13][12] and Meyer[15] was triggered by the Laplacian pyramid schemes of Burt

and Adelson[4]. However, Mallat is primarily given the credit because he developed the

fast algorithm which implements it.

An MRA is a set of embedded subspaces Vm such that

... C 1' C V1 C YO C V1 C V-2 C. (2.4)

These spaces, known as approximation spaces, further satisfy the conditions

f l;,, = {0} and U V" = L-(R), (2.5)
mEZ MEZ

and with the dilation factor of 2,

f E IM f f(2.) E Vm_. (2.6)

Furthermore, there must exist a scaling function 0 E Vo such that fomnanE, forms an

unconditional basis for Vm; i.e.,

I,' = span{fmn}nEz, (2.7)

where

¢•.(X) = 2-`/ 2 0(2-mn - n). (2.8)
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The integer translations of 0 are not necessarily orthogonal, but Daubechies[6] shows that

given an unconditional basis, we can find an orthogonal basis with no loss of generality.

For simplicity, we will assume orthogonality in this thesis.

Given this definition, we want to demonstrate the role of wavelets. First, we define

the detail space Wm as the orthogonal complement of I M in ,-. This means

W.1 .1 Vm, (2.9)

HVm C Vm,-, (2.10)

and

a-n, V W. = V._-.(2.11)

The wavelets are an orthonormal basis for the detail spaces:

11" = span{fm,}nEz, (2.12)

where

i,,,(x) = 2-m 21 /(2-mx - n). (2.13)

The constant 2 -m/2 in the above and in Equation 2.8 normalizes the energy of the corre-

sponding scaling function or wavelet.

Now, we want to describe how a function f E L2 (R) can be represented as a series

of the discretized wavelets ¢,,,,. Suppose we want to find the approximation of f at the

m-th resolution level. This is equivalent to finding the orthogonal projection of f onto 1V.

We write

P.f E V,. =P fP4(t) - -cm.0m.(t), (2.14)
n
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Vm.i
Qrnf

Pmf

Figure 2.1. Approximation Spaces and Projection Operations

where PA, is the orthogonal projection operator, Pm: L 2 (R) - Vi,,. and

Cmn = (fi Omn) (2.15)

are known as the approximation coefficients. The approximation at level n? is entirely

characterized by Cmn for n E Z. We can define a similar projection operator to project f

onto W,,:

Qnf E I'M =- Qmf(t) = Ydnn',n(t), (2.16)
n

where the dmn are known as detail coefficients and are defined similarly to the , From

these two projections, we can reconstruct the approximation of f at the m - 1 level by

Qrnf + Pm! = PM-..f. (2.17)

This is illustrated graphically in Figure 2.1. It is shown in [133 that

E) Wm, = L 2 (R) (2.18)

which implies that all dyadic dilations and translations of the mother wavelet c' form an

orthonormal basis for L2 (R). The multiresolution framework provides an efficient and
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elegant algorithm to find the approximation and detail coefficients at each resolution level

by using discrete filters on the approximation coefficients of the next higher level. Each

successive set of approximation and detail coefficients can be calculated from the previous

set of approximation coefficients and this calculation is independent of level.

To see this, consider the scaling function 010(t). Because we have V,' C VD. we can

express 010(t) as a linear combination of 40,,

2-1/20(t/2) = 1 h(n)4(t - n), (2.19)

where

h(n) = (Ojo,0oo). (2.20)

Taking the Fourier transform of both sides of Equation 2.19 yields

ý(2f) = H(f)3(f). (2.21)

where H(f) is the 1-periodic function defined by

H(f) = 2-'I/2 ' h(n)(-•2w71. (2.22)

This filter has a great deal of significance in the multiresolution analysis. Mallat demon-

strates in [13] that approximation coefficients cm, at one level can be easily calculated

from the approximation coefficients of the previous level by using the coefficients of filter

H; specifically,

Cmk = Z h(n - 2k)cmi,,.. (2.23)
n

Notice that the approximation coefficients cn,, which completely characterize the approx-

imation, can be calculated without having to calculate the inner product of f with o,,,,

directly. This is the elegance of Mallat's algorithm.
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- HCIO2

etc.

Figure 2.2. Illustration of the Dyadic Multiresolution Analysis

The detail coefficients dm,,, can also be calculated from the cm-,-, in a similar way.

If we define

g(n) = ('10,€0n), (2.24)

then, taking Fourier transforms, we get

t(2f) = G(f)ý(f), (2.25)

with G(f) defined similarly to H(f). Now, at each resolution level in a multiresolution

decomposition, we get a set of detail coefficients. This is illustrated in Figure 2.2. As the

number of decompositions grows without bound, the entire function will be represented by

the sets of detail coefficients.

Using the approximation and detail coefficients at a particular resolution level m. we

can reconstruct the approximation at the m - 1 level by using the same filter coefficienits:

Crn-,,n = JZh(n - 2k)cm, + E g(n - 2k)dmk. (2.26)
k k

This is a consequence of P,,,-if = P,,f + Qf.
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2.4 Filter Operations and the Multiresolution Analyses

The filters H and G are very important. However, as Daubechies points out in [6),

Mallat's algorithm deals only with sequences; the underlying multiresolution analysis is

only used in the computation of the filters H and G. Daubechies studied the filters and

determined they had certain properties which allowed Mallat's discrete algorithm to be

"weaned" from its multiresolution parent.

By defining H and G as bounded operators from P(Z) to itself:

(Ha)k = h(n - 2k)a,

(Ga)k = g(n - 2k)a,, (2.27)
n

Daubechies showed that for these operators, necessary conditions for Mallat's algorithm

to work could be expressed as

E Ih(n)l < oc,

, g(n)l < oc. (2.28)
n

In terms of discrete-time signal processing, this condition is equivalent to requiring the

discrete filters defined using the coefficients above to be stable. We want to perfectly

reconstruct a sequence from its decomposition, so with the adjoint operators

(HWa). = Eh(n - 2k)ak,
k

(G'a), = Eg(n - 2k)ak, (2.29)
k

we also require

HH" + GG" = 1, (2.30)
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where 1 is the identity operator. Similar to the requirement that the detail and approxi-

mation spaces be orthogonal, we require

HG* = 0. (2.31)

Finally, we assign approximation and detail roles to the operators by requiring

E h(n) = v2
n

1g(n) = 0. (2.32)
n

The four properties described above are identified by Daubechies[6] as the essence of Mal-

lat's algorithm. They are the conditions which allow you to separate the algorithm from

the multiresolution analysis (MRA).

These conditions can be restated in many different forms, some of which are more use-

ful for specific applications. One way we will find useful when relating Daubechies' work to

others in the discrete-time signal processing field is that of the polyphase representation[25].

The conditions on the operators H and G can be rewritten in terms of the coefficients h(n)

and g(n). The normality and orthogonality conditions expressed above in Equations 2.30-

2.32 can be combined and rewritten as

>[h(m - 2k)h(n - 2k) + g(m - 2k)g(n - 2k)] = nm,,

k

I[h(n - 2k)g(n- 21)) = 0, (2.33)
n

where imn is the Kroenecker delta function defined as

= -(2.34)
0 m2 n.
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To eliminate the factors of 2, we can define

aoo(n) = h(2n),

a0l(n) = h(2n + 1),

alo(n) = g(2n),

all(n) = g(2n + 1). (2.35)

so that the conditions on the coefliecients in Equation 2.33 can be restated as

Z [aoo(m - k)aoo(n - k) + al0(m - k)a10(n -k)] = 6n
k

Z [aol(rn -k)aol(n -k) + al(m -k)al 1(n -k)I = 6
k

EI [n00(rn -k)aoi(n -k) + al(m -k)all(n -k)] = 0,
k

Elaoo(n-k)aijo(n2-1)+ao1 (n--k)ali(n-l)] = 0. (2.36)

In the Fourier domain, these conditions become

I 000(f)12 + I01o(f)I2 = 1,

aI 00(f)12 + I~kjj(f)j2 = 1,

coco(f)a 01j(f) + aio(f)aii(f) = 0,

aoo(f)ajo(f) +acoj(f)ajj(f) = 0, (2.37)

where

ajkdf) = ajk(n)e'Qn (2.38)
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for j, k E {0, 1). If we define the matrix E such that

ET__ Q00(f) aio(f) (2.39)
C,01(f) 011Mf

then it is easy to check that the four conditions on the aij stated above are equivalent to

requiring E to be unitary. With a little manipulation, we can relate this requirement back

to Mallat's original filters H(f) and G(f). Requiring E to be unitary is equivalent to

H(f-+-½) G(f +)
(

being unitary'. It is important to note at this point that the conditions expressed above are

necessary and sufficient conditions for the Mallat's algorithm to work. However, Mallat

originally defined the filter coefficients h and g in terms of the scaling function 0 and

wavelet i/', respectively, which is to say that placing requirements on the filter coefficients

will affect the corresponding basis functions. In general, we want these functions to look

reasonably "nice" (continuous, differentiable, etc.) which implies that we want them to

have some degree of regularity. In the next section, we further examine the relationship

between filters and basis functions and examine regularity considerations.

2.5 Scaling Functions and Wa'velets

We saw in the previous section that the scaling functions and wavelets were related

respectively to the approximation and detail filters H and G. We developed conditions

on these filters which allow Mallat's algorithm to work. Now we want to investigate how

these conditions affect the scaling functions and wavelets.

'Mallat and Daubechies define h(n) differently which leads to some discrepancies when trying to relate
their work. Mallat defines h(n) = 1/2(0(./2), 0(.-n)) whereas Daubechies defines h(n) with a normalization
factor of 2-1'2 instead of 1/2. Conceptually the filters do the same operation, but the difference in the
scale factors can cause some apparent inconsistencies when expressing the conditions on the filters.
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Equations 2.21 and 2.25 express the relationship between the filters and the corre-

sponding basis functions. We iterate Equation 2.21 to get

oo

f=(O) 1 H(2- f). (2.41)
k=1

From this expression, we can see that the scaling function will be determined by the iterated

product of the approximation filter. Consequently, given an approximation filter which

satisfies the conditions for an MRA, we can calculate € via Equation 2.41 or its discrete

time equivalent. See Appendix A for details. The wavelet can be found by substituting

the expression for ý above into Equation 2.25 and changing variables to get

,(f) = ý(O)G(f /2) 11 H(2-k/). (2.42)
k=2

We mentioned earlier that we want the scaling functions and wavelets to look rel-

atively "nice" (continuous, differentiable, etc.) which implies they are somewhat regular.

Daubechies[6] has shown that a necessary condition for the iterated scaling function in

Equation 2.41 to converge to a regular function is that the filter H(f) have zeros of suffi-

ciently high degree at f = k + 1/2 for k E Z. This causes the zeroes of one dilation of H in

Equation 2.41 to attenuate the peaks of the previous dilation. As H is successively dilated

and multiplied in the infinite product, the high frequency peaks will be attenuated. The

greater the degree of the zero, the more attenuation occurs in the high frequencies and

the time-domain function is more regular. Consequently, for a regular scaling function, we

must have H(f) of the form

H(f) = (1 + e-i 2"w)NL(f) (2.43)
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which implies that the sequence h(n) is formed by N discrete convolutions of the sequence

e(n) 1 (2.44)
0 otherwise

with the sequence 1. where

£(f) = Zl(n)e,-tOnf. (2.45)
n

This will be important in the next chapter. The most significant contribution of Daubechies"

work in [6] is the development of a set of scaling functions (and thus wavelets via Equa-

tion 2.42) which are compactly supported and have an arbitrary degree of regularity.

Equivalently, an approximation filter is found which has the form of Equation 2.43 and

also satisfies the conditions of an MRA. If the sequence I is finite, then h(n) will be finite

and the scaling function generated by iterating H(f) will be compactly supported[6].

2.6 Multirate Discrete-Time Signal Processing

Multiresolution analysis has many connections with discrete-time signal processing.

Mallat's algorithm deals only with sequences and Paubechies has shown that it depends

on the sequences h and g. In this section we discuss the relationships between the MRA

as implemented by Mallat and maximally-decimated perfect-reconstruction filter banks.

We show that this interpretation leads to the development of MRAs which have integer

dilation factors other than 2. These MRAs have a single scaling function and two or more

mutually orthogonal wavelets. All dilations and translations of these wavelets form an

orthogonal basis for L2(R).

Mallat's algorithm can be interpreted as a 2-channel maximally-decimated filter bank

as in Figure 2.3. We say the filter bank has perfect reconstruction (PR) when i(n) =

x(n - 770 ) for no E Z+. The constant no accounts for the delay inherent in non-causal
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Figure 2.3. Multiresolution Analysis 2-Channel Filter Bank

Figure 2.4. M-Channel Filter Bank

filters. The conditions on the filters H and G as stated in Equation 2.40 are necessary for

perfect reconstruction and they were identified by Smith and Barnwell in [20].

The 2-channel filter bank can be generalized to an arbitrary M-channel filter bank.

The conditions for perfect reconstructions have been studied by miany[16J[21][23)[27) and

they can also be seen as a generalization of those in Equation 2.40. The M-channel filter

bank shown in Figure 2.4 has perfect reconstruction if

HO(f) H1(f) H2(f) ... HM-i(f)

H(f+-) Hj(f+-) H2(f,+-L) ...

H(f)= Ho(f +2) H,(f +I-) H2(f +D ... HM-I~f+22 (2.46)1

Ho(f + "-") H ,,(f +-•• H 2(f + - 1-- ) ... HIM -(f + -. 1-)
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is unitary. This matrix is referred to in the literature as the alias-component matrix[21][24].

Vaidyanathan focuses on finding unitary alias component matrices in [16] and [26]. He has

developed a technique whereby a unitary alias component matrix can be found given one of

the filters. We will discuss this technique in the next chapter and use it to find compactly-

supported wavelets.

We can now relate the M-channel PR filter banks back to multiresolution analyses.

In the dyadic multiresolution case, we had each approximation space composed of two mu-

tually orthogonal subspaces: a lower resolution approximation space and a detail space.

With the MRA based on the M-channel filter bank, which we will call the integer reso-

lution analysis (IRA), we will have each approximation space composed of M mutually

orthogonal subspaces: a lower resolution approximation space and M - 1 detail spaces.

This is significant because we now have Al -1 wavelets as basis functions for the Al - 1

detail spaces!

When implementing an IRA, we must be careful in rushing too quickly to find a set of

M filters whose alias component matrix is unitary. This is only a necessary condition. The

idea is to be able to develop a set of filters that satisfy the perfect reconstruction property,

but at the same time, ensure the filters satisfy the conditions required for approximation

and detail operators. The relationships in Equations 2.21 and 2.25 are generalized for the

IRA so that

(k) (Mf) = Hk(f)ý(f), k= 1 ... M- 1,

'(Mf) = Ho(f)q(f), (2.47)

where we have arbitrarily chosen H0 to correspond to the approximation filter. We also

want to impose some regularity on the scaling functions. This will be the topic of the next

chapter. Furthermore, we will want a method to find a set of perfect reconstruction filters

which satisfy the conditions for an IRA. We also discuss this in the next chapter.
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2.7 Rational Resolution Analysis

The rational resolution analysis (RRA), the main topic of this thesis, is a relatively

new concept and has little or no literature currently available. However, there are two

notable items which are related to the research at hand and it is appropriate to mention

them here.

The first is the work of Pascal Auscher in both [2] and [3]. Auscher has shown

that multiresolution analyses with rational dilation factors are possible and that the corre-

sponding wavelets form an orthonormal basis for L2 (R). However, the wavelets are neither

compactly supported nor do they have exponential decay. We can allow non-compactly

supported wavelets, but if they do not have sufficient decay, their usefulness diminishes.

We want a wavelet to decay relatively quickly so that it has good localization in time (or

position). Without good localization, the wavelets' usefulness in analyzing non-stationary

signals is limited. Recall this is why wavelets were developed in the first place.

The second item is not as important as the first but has some relevance. Kova•evi6

and Vetterli have done some work in [11] on perfect reconstruction filter banks which have

rational sampling rate changes. This is encouraging from an intuitive standpoint because

of the effect rational sampling rate changes have on the spectrum of a signal. Furthermore,

the RRA we develop later involves the concept of rational sampling rate changes. More will

be said on this in the discussion of the RRA. First, we must discuss the integer-resolution

case since it is a necessary component for reconstructions in the RRA.
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III. Integer-Based Compactly Supported Scaling Functions and Wavelets

3.1 Introduction

In this chapter we extend the work of Daubechies and Vaidyanathan to produce com-

pactly supported scaling functions and wavelets which correspond to the integer resolution

analysis (IRA) described in the previous chapter. These scaling functions and wavelets

can be generated with an arbitrary degree of regularity, although regularity is traded for

support width. We apply a technique developed by Vaidyanathan to calculate the detail

filters (and thus the wavelets) once the approximation filter is given. The technique also

allows the wavelets to be selected in some optimum way. We present an example where

the wavelets of a particular IRA have been optimized so that the stop-band energy of the

corresponding detail filters is minimized.

3.2 Compactly-Supported Scaling Functions

The theory of compactly-supported scaling functions for dyadic multiresolution anal-

yses is well developed in [6]. Compactly-supported scaling functions which have some de-

gree of regularity can be generated from approximation filters which satisfy the conditions

H(f)12 + IH(f+ 1/2)12 = 1,

H(0) = 1, (3.1)

where H has the form of Equation 2.43. For compactly-supported scaling functions, we also

require that for the filter H(f) = 2-12 ",, h(n)e-i2 nJ, a finite number of the coefficients

h(n) are non-zero. In signal processing terms, we say H(f) must be an FIR filter.

These are two conditions on the approximation filter that must hold for the dyadic

MRA. The conditions can be generalized for integer-resolution analyses with dilation fac-

tors other than 2. The first condition in Equation 3.1, above, is a result of the orthogonality
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of the family {O0n}nEz expressed by

E I¢(f + n)I2= 1 (3.2)
n

via the Poisson summation formula[12]. It is also a restatement that the first column of

the matrix given in Equation 2.40 has unit norm, which is requirred for a unitary matrix.

The corresponding condition for an IRA with dilation factor Al is that the first column of

the alias component matrix in Equation 2.46 have unit norm so that

M-1

SjH(f + k/M)l 2 = 1. (3.3)
k=O

The second condition in Equation 3.1 is independent of dilation factor and thus remains

the same.

In order to have a scaling function with some degree of regularity, we must impose

additional constraints on the form of the filter as we saw for the dyadic case in Equa-

tion 2.43. The spectral factors, (1 + e-i 2-f), are necessary to attenuate repeated spectra

in the construction of the scaling function via, Equation 2.41. Analogously, we require that

an approximation filter for an IRA with dilation factor M have the form

H(f) = (JeI.- i2kf) N(f), (3.4)

\k=0

where
L-1

£(f) E 1(n)e-i'w 1 . (3.5)
n=Q

This is equivalent to requiring the sequence h(n) be equivalent to N discrete convolutions

of the sequence

e(n) , , (3.6)
0 otherwise
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with the sequence 1. Because we require scaling functions with compact support, £(f) is

such that 1 has a finite number of non-zero terms.

To calculate the approximation filter coefficients, it is helpful to rewrite the conditions

on the approximation filter in terms of its coefficients. The two conditions above can be

combined into a single condition on the coefficients of the approximation filter:

Zh(n - Mk)h(n - Ml) = 611., (3.7)
n

which is derived by expressing Equation 3.3 in terms of the h(n) and combining like terms.

The incorporation of the second condition, H(O) = 1, is forced by the structure of the

filter. If N is chosen so the corresponding scaling function has as much regularity as its

support will allow, (N = L), then the second condition will be satisfied. This is illustrated

by the following example.

Example 3-1 Suppose we want to find an approximation filter H for M = 3 such that

there are 6 non-zero terms in h(n) (6 taps). We want to impose maximum regularity

which implies N = 2 because any larger would generate at least a 7-tap filter. This means

that h(n) is composed of a convolution of the sequence r(n) = {1.2,3,2.1} with a two

element sequence {l(O), l(1)}. We perform this discrete convolution and find the following

expressions for the h(n):

h(O) = l(1),

h(l) = 21l(1)+ l(O),

h(2) = 3l(1)+21(0),

h(3) = 21(l)+31(0),

h(4) = l(1)+21(0).

h(5) = 1(0).

3-3



With the filter constraints as:

SIhn)I - 1,
n=.O

2

Sh(n)h(n + 3) 0.

We determine 1(0) = ±1.01516 and 1(1) = TO. 4 378 1 so that the resulting h(n) are shown

in Table 3.1.

Table 3.1. Filter Coefficients for M = 3 Scaling Filter with 2 Degrees of Regularity
n h(n)
0 0.3383860972838639
1 0.5308361870137393
2 0.7232862767436145
3 0.2389641719057618
4 0.0465140821758866
5 -0.1459360075539887

0

We can generalize the technique illustrated in this previous example to find scaling

functions for arbitrary M dilation factors. For higher regularity, we simply increase N.

We also find that I will have N non-zero terms, there will be N constraints on h. and the

length of h will be NM.

Coefficients for various approximation filters and graphs of their corresponding scal-

ing functions are contained in the appendices. In general, the coefficients were found using

root-finding software. It is interesting to note that the scaling filter coefficients are not

unique and that the result depends upon the initial guess at the solutions. The choices

given in Appendix C were chosen to generally correspond to those published by Daubechies

in [6] so that the scaling functions generated would be comparable in shape. This shape
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similiarity is very important to the RRA and we will comment more on this in the following

chapter.

3.3 Alias-Component Matrix Decomposition

We have seen the relationship between integer resolution analyses and perfect re-

construction filter banks. A unitary alias-component matrix satisfies the majority of the

conditions for an integer resolution analysis. In the previous section, we have shown how

the constraints for an approximation filter can be satisfied so that one column in the

alias-component matrix is now fixed. Note that the second condition for the wavelet filters

E = I. .. M - 1 (3.8)
n

is also satisfied now as a consequence of satisfying both conditions on the approximation

filter. The task now is to find M - 1 filters such that the alias-component matrix is unitary.

Vaidyanathan[26] has developed a technique with which the other filters of an 11-

channel perfect reconstruction filter bank can be found once one of the filters is specified.

This technique is easily adapted to finding the Al - I wavelet filters once the approximation

filter has been calculated as in the last section.

In order to describe its implementation. we need to introduce some notation from

multirate digital signal processing. Reference [24] provides a good background. We intro-

duce the z-domain notation for the description of our filters:

H(z) = M- 1 / 2  h(n)z-. (3.9)

This filter is related to the previously defined H(f) by z = e 2l`. We say that H(z) is

causal if the sequence h(n) = 0 for n < 0. Subbtituting the z-domain notation for H(f)
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into the alias-component matrix we get

Ho(z) Hi(z) ... HMI.(z)

H~) Ho(TV -l1z) Hl(W-lz) ... 1m-1M(W-1z) (.0H~z) =(3.10)

110(W-(M-)z) HI(W-(M-1 )z) ... Hm-,(R/-(M-I)z)

where TV = z -u = e"2T lM. Because we have only changed notation, requiring H to

be unitary is equivalent to requiring the alias-component matrix (Equation 2.46) to be

unitary.

A filter Hk(z) = , hk(n)z-" can be expressed in the following polyphase form:

M-1

Hk(z) = z-'Ekt(zM')" (3.11)
1=0

where

EkI(z) = E h-( Mn + l)z-". (3.12)
n

The EI.t(z) are known as the polyphase components of H(z)[26]. We define the polyphase

matrix E(z) such that the k-th row and l-th column is given by Ekl(z) for

k,I E {0,1,...,1 - 1}. The polyphase matrix E(z) is related to the alias-component

matrix by

H(z) = WfD(z)ET(zM), (3.13)

where W is the M ×A discrete Fourier Transform (DFT) matrix defined by [Wkilkm and

D is given by

D = diag[1 z-1 ... z-(M-I)]. (3.14)

One thing to notice in this expression for H(z) is that both Wt and D are unitary matrices.

Consequently, E(z) must be unitary if H(z) is unitary and vice versa. Thus, requiring E(:)
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to be unitary is equivalent to requiring H(z) to be unitary. We will find it more convenient

to deal with uniitary polyphase matrices than alias-component matrices.

Suppose we have a unitary polyphase matrix. Because the product of unitary matri-

ces is also unitary, it makes sense to decompose a polyphase matrix into several smaller,

less complicated matrices. The reverse is also true: we can construct a unitary polyphase

matrix using those same building-block matrices. However, we need to be able to specify

those matrices so that the resulting polyphase matrix satisfies the additional conditions

for an IRA. We want one of the columns in the polyphase matrix to correspond to the

approximation filter-the other filters will automatically correspond to wavelet filters.

The degree of a unitary alias-component matrix H(z) is defined as the degee of its

determinant. Perfect reconstruction (or lossless) systems have determinants of the form

detH(z) = cz-(N-1) (3.15)

so that the degree is simply N - 1. Vaidyanathan demonstrates in [26] that any 11 x Al

causal FIR system HNi(z) is lossless if and only if it can be expressed as

HNI(Z) = VNI(Z)VN.2(Z)'" .Vl(z)Ho. (3.16)

where the subscript on H indicates its degree so that H0 is a constant M x If unitary

matrix and Vk(z) are M x M FIR unitary matrices of degree one. Each Vk has the form

Vk = [I - VkV + VkVfZ (3.17)

so that the entire system can be characterized as a set of N - 1 unit-norm vectors, Vk, and

the unitary matrix, H 0 . Furthermore, Vaidyanathan demonstrates that any .4 X 1 column
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vector of the form
N-1

PN-.(Z))= E P(n)z-' (3.18)
n=0

is lossless1 if and only if it can be expressed as

PN- (z) = UN-1.(Z)UN_.(z) ... U1 (z)Po (3.19)

where again the subscript on P indicates its degree so that P 0 is a constant M x 1 column

vector with unit norm. Here, the degree of a vector P is defined as N - 1 from its definition

in terms of p. The definition requires p(N - 1) $ 0. The Uk are MxM degree-one lossless

FIR matrices and they have a form similar to Vk:

Uk= [I-UkUk + UkUkZ], (3.20)

where Uk are constant M x 1 unit-norm vectors.

We want to find the Uk which will decompose PN-j as in Equation 3.19. The choice

of Uk is critical. We want to choose Uk such that Uk reduces the degree of Pk. That is.

we want to choose Uk so that UkPk = P_.1. (Note that only the subscript on P denotes

its degree; the subscript k on U denotes the matrix that reduces Pk to Pk-1.) In order to

do this, two things must happen. First, the coefficients pk(k) of z-k must be "zeroed out"

and second, the system must remain causal, i.e. no positive powers of z can result from

the operation. From the definition of Uk, this implies that

[I- ukul]pk(k) = 0 (3.21)

and

[ukUk]pk(O) = 0, (3.22)

'For vectors, "Jossless" means the vector has unit-norm or PP = 1
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fork = 1,2,...,N-1. A property of lossless vectors Pk(z), is that pk(O)pk(k) = 0. This

can easily be seen by multiplying PP and equating powers of z. With this in mind, we

choose

Uk _ pk(k) (3.23)
u-Pk(k)I3

which satisfies Equations 3.21 and 3.22. The resulting Uk will reduce the degree of Pk. It

is clear we can successively reduce the degree of PN-1 by choosing the appropriate Uk(z)

at each step. Furthermore, the factorization

PN-1v(z) = UN- 1 (z)UN--2(z)-. U1(z)PO (3.24)

is unique. At every step in the factorization, there is only one choice (to a scale factor) of

Uk that will result in a Uk(z) that reduces the degree of Pk(z). Each of the U,(z) is then

unique as is the final vector P0. This is in contrast to the factorization of the matrix

HN_.(z) = VN-I(z)VN_ 2(z}) .Vl(z)HO. (3.25)

The Vk(z) are not unique in general. However, the final matrix H0 is unique and so is

the product V(z) = VN...(z)VN_ 2(z) ... V(z)[26]. This uniqueness will be useful later

in finding sets of orthonormal detail filters which correspond to wavelets. The following

example illustrates a simple decomposition.

Example 3-2 Consider the lossless vector P1 (z):

0.022876- 0.577124z- 1
P1(z) = [ -0.016176 - 0.816176z-i
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To decompose P (z) we choose

1 [-0.577124

0.999607 [.816176
-0.5773510.816497

so that

U1 = IUkU + UkU•Z[0.6667 + 0.3333z -0.471405 + 0.471405z

-0.471405 + 0.471405z 0.6667 + 0.3333z

Then

UJP= = Po 0.

0.8

which is equivalent to

[0.022876 - 0.577124z-1 1
-0.016176 - 0.816176z-1

[0.6667 + 0.3333z-' -0.471405 + 0.471405z-1  0.6 ]
-0.471405 + 0.471405z-' 0.6667 + 0.3333z' 0.8

Having gone through this development, it is useful to provide a summary. We have

shown an IRA requires a unitary alias-component matrix. We related this requirement to
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a z-domain representation of the alias-component matrix and to the polyphase represeni-

tation. From there, we demonstrated that the unitary system matrix (or vector depending

upon your representation) of any lossless system can be factored into a set of degree-one

unitary matrices and a constant (degree-zero) unitary matrix (or vector). The next step

is to describe how we use such factorizations to implement an IRA.

3.4 Compactly-Supported Wavelets

Suppose we have the approximation filter of an IRA found, perhaps, using the tech-

nique described earlier in this chapter. We express it in polyphase form and treat it as one

column of the polyphase matrix ET(z). We can then factor this column like we factored

PN-1(z) and find the unique

U(z) = UNI(Z)U,,2(_z) ... U 1 (Z) (3.26)

that decomposes the approximation filter. We can then specify the other filters (columns in

ET(z)) by simply letting the P 0 be one column in H0 (Equation 3.25) and finding the other

columns such that the matrix is unitary. The transformation matrix U(z) will transform

each column independently so that the resulting HN- 1 matrix is guaranteed to be lossless

because it has two unitary matrices U(z) and H0 as its only factors.

It is interesting to note that the number of different filters that result from this

scheme is equivalent to the number of ways you can specify a constant unitary matrix with

one column fixed. For an arbitrary M, there are degrees of freedom in the choice of the

other columns which means that the detail filters are not unique and so the corresponding

wavelets are not unique.

Because we have flexibility in the choice of wavelets, we can apply some design criteria

in their selection. One choice of design criteria is to minimize the stop-band energy of the

filters. We define the pass-band of the approximation filter as the lower (1/MA)-th of the
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normalized frequency range (f E [0, 1/(2M)]) and we define the pass-bands of the other

wavelet filters as continuous non-overlapping regions of width 1/(2M). We optimize the

fdtei, so that the energy outside of their pass-iands is minimized. This is important if

we want the wavelets to correspond to good bandpass filters. We illustrate this with the

following example:

Example 3-3 In Example 3-1 we calculated the approximation filter coefficients for the

M = 3,N = 2 scaling function. Decomposing this filter, we find

ho + h3 z-1

h, + h 4 z-- U(.) .

h2 + h 5z-'

where

1- h3 + h2z-1 -h 3 h4 + h3 h4 z-' -h 3 h5 + h3 h5 z--]

U(z) -h 4 h3 + h4h3 z-1 1 - h2 + hz` -h 4 h5 + h4h 5 z-1

-h 5 h3 + h5h3z-1 -h5h4 + h 5h4 z-1  1- h.5 + h5z J

The h, above are given in Table 3.1. Notice that the constant vector has repeated entries of

the same value. As it turns out, scaling functions constructed in this way will all have the

value M-1/ 2 as the only unique value in the constant vector. This is a result of imposing

regularity on the filters and is independent of N.

With the U(z) given above, the next step is to find two more constant vectors such

that they are orthogonal to the constant vector above and orthogonal to each other. We

need to find the hij so that

I hic h2o

Ho I hil h~i

1 h1 2 h22
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Table 3.2. Unoptimized Detail Filter Coefficients for M = 3 and N = 2
n h1(n) h2(n)
0 -6.1001669566712731 0.4082482904638631
1 -0.1571348402636774 -0.816496580927726
2 -0.2141027238560812 0.4082482904638631
3 0.8072737378578210 0.0
4 0.1571348402636774 0.0
5 -0.4930040573304665 0.0

is unitary. We could choose

hl=[ •/j 0 - T/ ]T

and

h = TF _ V,2/- VT 6] .

This would give us the coefficients given in Table 3.2. The frequency responses of the detail

filters given by these coefficients is shown in Figure 3.12. The approximation filter is also

shown in the same figure for reference.

We optimize the choice of the two remaining columns to yield detail filter coefficients

which correspond filters with minimum stop-band energy. For the M = 3 case, we assign

the pass-bands to be successive thirds of the spectrum. The approximation filter is assigned

the lowest third, and the two detail filters are assigned the middle and upper thirds. The

energy density of a filter is given by

S(f) = H(f)HI(f) = IH(f)12.

'The coefficients for h2(n) are not in error. This particular set of coefficients is unchanged by multipli-
cation with U(z) and can be considered an eigenvector of the matrix.
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In terms of the filter coefficients:

s(f) = N- R(n)e •'r:
n

= R(o) + 2 1 R(n) cos(27rnf)

where R is the autocorrelation sequence given by

R(r) = E h(n)h(n - r).
n

The energy in the stop-band of a filter is found by integrating S(f) over the stop-band. In

this example, we want to minimize the energy in the stop-bands of the two detail filters

with respect to their coefficients, so the objective function is given by

J(f) = S 1(f)df + Sl(f)df + S 2(f)df

where S and S. are the filter energies of the respective detail filters. We only need to

integrate over stop-bands for f E [0, 1/2] because IH(f)i is symmetric about f = 1/2 for

filters with real coefficients.

J will be a function of the six remaining coefficients in Ho. We minimize 3 J subject

to Ho being unitary and we find

hi = -0.812690 0.338143 0.474546 IT

and

2= = 0.078752 -0.743186 0.664434 IT

'Matlab's constr function (Optimization Toolbox) was. used.
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with the corresponding detail filter coefficients given in Table 3.3. The frequency response

of the approximation filter and the two optimized detail filters are shown in Figure 3.2.

The corresponding wavelets are shown in Figures ).3 and 3.4. For comparison, the

Table 3.3. Optimized Detail Filter Coefficients for M = 3 and N = 2
n hi(n) h2(n)
0 -0.07789569612441 0.41307668343873
1 0.48116523128534 -0.67811359291308
2 0.02581048126453 0.46026129761925
3 -0.73479360808553 -0.33431907117540
4 -0.14302667214182 -0.06507479604830
5 0.44874026380189 0.20416947907880

Magnitude versus Normalized Frequency

0.8 HO H / 112 //
0.6

0.4 . \

/ /
0.2 /

0.2 0.4 0.6 0.8

Figure 3.1. Frequency Response of M = 3, N = 2 Approximation Filter and Unoptimized
Detail Filters

wavelets corresponding to the unoptimized detail filter coefficients (Table 3.2) are shown in

Figures 3-8 and 3-3.

0
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Magnitude versus Normalized Frequency

0.8 HO HI H2

0.6

0.40.2

0.2 0.4 0.6 0.8 1

Figure 3.2. Frequency Response of M = 3, N = 2 Approximation Filter and Detail
Filters with Minimum Stop-Band Energy

0 ... .. ... ...... ..
-2

-0.5 0 0.5 1 1.5 2 2.5 3
t

Figure 3.3. M = 3, N = 2 (Mid-Pass) Wavelet with Minimum Stop-Band Energy (4'(t)
vs. t)
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-2

4.5 0 0.5 1 1.5 2 2.5 3
t

Figure 3.4. M = 3, N = 2 (High-Pass) Wavelet with Minimum Stop-Band Energy (V,(t)
vs.

-2

-0.5 0 0.5 1 1.5 2 2.5 3

Figure 3.5. Unoptimized M = 3, N = 2 Wavelet (V'(t) vs. t)

3-17



2

-2

-0.5 0 0.5 1 1.5 2 2-3 3

Figure 3.6. Unoptimized M = 3, N = 2 Wavelet (,O(t) vs. t)
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IV. Rational Resolution Wavelet Analyses

4.1 Introduction

This chapter introduces a rational resolution analysis (RRA). A rational resolution

analysis is similar to the integer resolution analyses except the approximation and recon-

struction operations are generally more complicated because the approximation spaces are

not embedded, as in the integer resolution analyses. We begin with a definition which is

similar to the integer resolution analysis followed by a description of the decomposition

and reconstruction operations. We study the approximate reconstruction obtained with

compactly supported scaling functions and wavelets. We derive the necessary conditions

for perfect reconstruction. In particular, we show that the spline-based wavelets and scal-

ing functions will give perfect reconstruction. Finally, we provide a description of the

frequency characteristics of the rational resolution analysis.

4.2 Rational Resolution Approximation

Recall the approximation spaces V.. for integer resolution analyses were defined as

the spaces spanned by orthonormal integer translations of a single dilated scaling function:

V_ = span{Im.}n-Ez. (4.1)

The integer resolution analysis restricted the dilation factor M to be an integer greater

than 1. Now, for the rational resolution case, we relax this restriction and allow M = p/q

for p,q E Z+, p > q, and q i 0. In general, the ,ational dilation factors of most interest

will lie between I and 2.
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Like the integer resolution case, we define the rational resolution approximation

operation as an orthogonal projection onto an approximation space Vm. We define

p/cn( t) = (p/q)-"/ 2 ¢((p/q)-mt - n) (4.2)

and

Vm = span{ Wqmn nsz (4.3)

where 00n for n E Z is an orthonormal basis of 1VO. For f E Vn-1, the approximation of f

in V,, is given by

(PP" f)(t) = Zcmn p/@,.n(t), (4.4)

where now

C,.n = (f, pimn) (4.5)

This is slightly different than the integer-resolution case in that the operator projects from

one approximation space to the next instead of from L'(R) to an approximation space.

This implies that the projection from L2 (R) to some Vm has been found. This difference

will be further explained later.

The p/q forescript is used to explicitly denote the dilation factor. We will generally

omit the forescript throughout this chapter except in cases where it is necessary for clarity.

The approximation at a given level m is entirely characterized by the approximation

coefficients cm, for n E Z. To cast this approximation into a multi-level decomposition

scheme so we can relate f E Vmi- to its approximation in V,, we need to describe the

relationships between the approximation coefficients at adjacent levels. We want to develop

operators on those coefficients which will effectively project a function from one space to

the next. To do this, we need to look at the relationship between the c,,,, and cmn.
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Given a function f E V0, we write

f(t) = •ZC0,0,(i). (4.6)
n

The first level approximation of f is given by

(Pf' f)(t) = Zclk¢lk(t). (4.7)
k

We express the {Clk}kEZ in terms of the coefficients of the expansion of f E V0:

elk = •Ce(¢0n,,1}k) (4.8)

which relates the two sets of approximation coefficients. We can express this relationship

by defining a filter matrix H 1 such that its k-th row and n-th column is (00,,01k). If we

write the approximation coefficients as vectors c0 and ce, then we have

cl = Hc0 . (4.9)

This development is identica: to the integer resolution case thus far, but the similarity ends

here.

Recall that for the IRA, the approximation spaces are embedded. This allows us to

express the basis function of one approximation space as a linear combination of the basis

functions of the previous approximation space:

€(t/M) = E h(n)O(t - n) (4.10)

'We also defined H earlier to be the alias component matrix. Its use will be clear from the context.

4-3



where M is the familiar integer dilation factor and h(n) (01o, O0n). We will show that for

the rational resolution analysis defined above, the approximation spaces are not embedded

and so the relationship between approximation coefficients at adjacent levels is not so

straightforward.

To see that the approximation spaces are not embedded for rational dilation factors,

let 0 be an orthonormal basis for V0 and r be an arbitrary rational dilation factor. Now

consider the function r-1k(t/r) E 1/i. If we assume embedding of the approximation spaces,

we write

r,-'(t/r) = Zc(n)k(t - n). (4.11)

Now consider the function r-2
0(t/r 2 ) E V2 . Since V2 C V1 C V0, this function also has an

expansion in terms of O:

r-2 0(t/r 2 ) = Zd(n)O(t). (4.12)

Taking the Fourier transforms of these two expressions, we find

ý(rf) = C(f)ý(f)

ý(r2f) = D(f)ý(f) (4.13)

with D(f) = E,, d(n)e-i-0n! and C(f) defined similarly. This leads to

D(f) = C(f)C(rf). (4.14)

Now, we know D(f) and C(f) are both 1-periodic in f from their definitions. However,

C(rf) is I/r-periodic. Therefore, the product C(f)C(rf) is 1-periodic if and only if r is an

integer. Consequently, the approximation spaces are embedded for, and only for, integer

dilation factors.
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This is why we express the projection operators as projections from one approxi-

mation space to the next instead of from L2 (R) to an approximation space. When the

approximation spaces are not embedded, the projection from L2(R) onto V is not equiv-

alent to the projection from L2 (R) onto V,,,- 1 and then to V,,.

The relationship between the approximation coefficients at adjacent resolution levels

can now be derived. We demonstrate the relationship in two ways. The first involves the

inner product filter matrix H. Consider the following examples:

Example 4-1 Consider the rational dilation case with p = 2 and q = 1 and scaling

function q4 = xiO 1), the characteristic function. This integer resolution case is a special

case of a rational dilation. The scaling function of the first approximation level is k =

\/ 7 -2X[o,2). The inner product matrix is then

"0 0 0 0 0

o V'17/ Vi-2 0 0 0H= (4.15)
o o o o"7v7

0 0 0 0 0

The approximation operation is expressed by Cm = Hcm.-i where cm represents a column

vector of approximation coefficients corresponding to the m-th approximation le'cl. The

values of H are calculated from the definition of the inner product:

(00., 01) = V _12] Xfn,n+1)(t)X[2k, 2( +1))(t)dt. (4.16)

0

Notice for this simple example that the rows of H are identical except for column shifts.

This allows us to write the relationship between the c0 , and clk in the form with which we
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are most familiar:

Clk = , h(n - Mk)co,, (4.17)
n

where
{v/I-.T n =0,1a

h(n) T(4.18)
10 otherwise

Also notice for H corresponding to integer dilation factors, we have

HH* = I (4.19)

which encapsulates many of the orthogonality conditions on the approximation filters dis-

cussed earlier[28]. Now consider a rational approximation case.

Example 4-2 Consider the integer dilation case with p = 3 and q = 2 and scaling func-

tion 0 = XIo,I). Now, the scaling function of the first approximation level is jOlk =

(3/2)-'XIo,3/2). The inner product matrix is now

"0 0 0 0 0 0 0

o v/2-/-3v 1 / 0 0 0 0 0

H = (4.20)
o a 0 0 V/2- V/rT7- o 0

o 0 0 0 0 o o23 0

0 0 0 0 0 0 0

where the values are calculated from the definition of the inner product:

(€0, €kik) = (3/2)-1 X(n,,,n+l)(t)X[.k,(k+I))(t)dt. (4.21)
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The inner product matrices in both the previous examples have similar block structures.

That is, the matrices consist solely of non-overlapping shifted versions of some elementary

submatrix, called a block, along their main diagonal. This is caused by the periodic

behavior of the inner product:

(01k, 00.) = (00ok-q,,• ln-lp), for each 1 E Z. (4.22)

The dimensions of the block will depend on the rational dilation factor and the support of

the scaling function. There will be q rows and each block will be offset from the next by

p columns. This is shown in Figure 4.1(a). Another interpretation of the structure is to

block q 0 0 0

H= lH=
0 H

(a) (b)

Figure 4.1. Block Structure of the Inner Product Matrix

define the block to have p columns with each block offset from the next by q rows. This

interpretation is shown in Figure 4.1(b). With this interpretation, H can be considered

as a filter operator and the impulse response of the filter can be found by directly looking

at a particular column of the elemental block. Notice that the filter will generally have p

different impulse responses depending on the location of the single non-zero value in the

input sequence.

Figure 4.1 suggests the elemental blocks have finite dimensions. This is true when

compactly-supported scaling functions are used. The width (Figure 4.1(a)) or height (Fig-

ure 4.1(b)) of the fundamental block will depend upon the support of the scaling function.

The matrix entry will be non-zero only for row k and column n corresponding to shifts of
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'00, and O1k which result in some overlapping support. For scaling functions which are not

compactly-supported, the blocks will have infinite dimensions. However, the inner product

matrix as a whole will still have structure in the sense that rows and columns will regularly

repeat because Equation 4.22 will still hold.

The second description of the relationship between the approximation coefficients at

adjacent levels is presented in the Fourier domain. By Parseval's relationship

Now with

'on(f) =

¢l~)= (P/q)'/e'"k(~) q 4.24)

we have

('kon,&r) = V,1 0 4(qf):k(pf)e2'(n-kP)fdf. (4.25)

By defining H(f) = qp(qf)p(pf), Equation 4.25 defines the inverse Fourier transform. h.,

of H so that

(¢o,,€1k) = h(nq - kp). (4.26)

By defining

-I(f) = Zh(n)e-i•wn (4.27)

where h(n) = h(-n), the operation cl = Hc• can be viewed as a filter operation where the

{co,} are upsampled by q, filtered with H, and downsampled by p. Figure 4.2 illustrates

this. This leads to the following relationship between the approximation coefficients:

clk= 1 h(nq - kp)co,. (4.28)

4-8



Figure 4.2. Processing diagram for Rational Resolution Approximations

Notice the case where q = 1. The dilation factor becomes simply p and the same expression

as the integer resolution case results. The integer resolution analysis is simply a rational

resolution analysis with q = 1. This is intuitive considering the integers are a subset of the

rational numbers.

4.3 Rational Resolution Reconstruction

The previous section dealt with the approximation operation of a rational resolu-

tion analysis. This section will discuss reconstruction. Like the approximation operation.,

rational resolution reconstruction is more complicated than the integer resolution case be-

cause the approximation spaces are not embedded. Embedding implies each approximation

space can be expressed as the direct sum of a lower-resolution approximation space and

one or more detail spaces. Any information not carried into the next approximation is

retained in the detail space(s). Consequently, reconstruction is simply the recombiration

of information contained in the approximation and detail spaces and no information is lost

because the direct sum of the subspaces equals the original space. The orthogonality of

the subspaces ensures no redundant information is obtained in the approximation space.

When the approximation spaces are not embedded, it is not clear how the detail

information can be represented. We could define a detail space which is orthogonal to the

rational approximation space. A space whose orthogonal basis is an equivalently-dilated

wavelet would qualify. However, this space cannot be the orthogonal complement of 1V,

in V,,-,. This is a consequence of the approximation spaces not being embedded. Hence.

we do not have wavelets which represent the detail information in the same way as the
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integer resolution wavelets so we must find another way to recover the information lost

during rational approximation.

Suppose we have a function f E Vmi- which has been projected onto Vm via a rational

approximation operator Phq. Our goal is to reconstruct f from the approximated version

(pplqf). First we approximate (PP/qf) by projecting it onto a space V,' defined such that

V,,', = span {Dl1qp/1qm.},z , (4.29)

where D is defined as the dilation operator such that (Def)(t) = f(Gt). Notice that the

{D'/qP/p6q11r z span the same space as the p-dilated basis functions of Vr- 1 . In other

words, we also have

V" = span{D1P ,lq05_ ..i} 1,Ez. (4.30)

Consequently, if 0 is defined so that it satisfies the integer dilation equation

'(pf) = H(f)4(f) (4.31)

for some H(f) = F,,, h(n)e- 2wnf, it follows that we have V" c V.n . If V, is an embedded

subspace of V,- 1 based on an integer dilation factor of p, then it will have p- 1 mutually

orthogonal detail spaces. From this point, the reconstruction is the same as an integer

resolution analysis based on p. Define the following projection operators on L2(R):

J,P" f = fp/0np9.k
k

Pq f = (I/q)'(f, 1/q1,..I)D1/ q4•,,
I

PP.f = (I/p) "(f, D'/:,-,,,)D'/p:,,,,,
I

Qf = _(f,Dl1/Pgpm,,,_.,)DllPv/q0,n_•.,. (4.32)
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The notation D1 /Pp/ik,,._,i denotes the wavelets which form the orthogonal complement

of V/, in Vm..-i. The RRA approximation and reconstruction scheme is illustrated in Fig-

ure 4.3.

- Decomposition

--- Reconstruction

V,-i

Q t qll/ql / "•• v++
Vm+/ I /a-

WI VI,

Figure 4.3. Summary of Rational Resolution Approximation and Reconstruction

We cannot assume this scheme yields perfect reconstruction unless we start with the

correct approximation in V' . So, we need to study the projection onto V'4 from V ,.

In order to get perfect reconstruction, the projection onto V'," must be the same

regardless whether we project from Vm.-i or V,1 . This implies that for f E Vm we must

show

p, pq pqf = Pp f. (4.33)

To show this, we start with

Pq f = -(f,p190.k)p)/90k. (4.34)
k
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Projecting this function onto V, gives:

I k

where we have used the fact that all the functions are real. Now, consider the projection

of f directly onto V,':

P,, f D "-(f p , p1,•.,l ) Dl~plqOrrb11. (4.36)

Substituting

D1/PqO,,m_.,j = (p/q)l/ 2 D1/qp,•kt 1 , (4.37)

we find that in order to show the equivalence of the two projections, it is necessary and

sufficient to show

D11%146.1 = D(pqok,, D'Iqp/cOt)plgOk. (4.38)
k

This simply says D1"/p'q,4, is a linear combination of the D1Ihp/hok, from which it follows

that these spaces must also be embedded. So, in order to get perfect reconstruction, we

must define the space V' such that V," C V,-,. and V,, C 1'n.

The projection from Vm to 1' is interesting. Dilating both sides of Equation 4.38 by

(p/q)'" gives

Oil = E(p/Thxk,k1Ol)•k-. (4.39)
k

By substituting (p/9k,,D'/p/Om) = Vq(C0k,01) in this expression, we arrive at the

condition:

4011 = E(Ook,qO11)Ook. (4.40)
k
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This implies that the approximation operator which projects from Vm to V, is based on

an integer dilation factor of q. That is, given a function f E V,,, we have Pq f E V,'. This

is significant because integer-based projection operations are generally easier to implement

than rational ones.

As a summary of this section and the previous one, consider Figure 4.3. From this

figure, the processing scheme suggests that the rational resolution analysis is superimposed

upon an integer resolution analysis. The reconstruction procedure exactly corresponds

to an integer resolution analysis except the approximation in V,' is found by way of an

intermediate space Vm rather than by direct projection from V,,,-. We have also established

that perfect reconstruction is obtainable only if the V7 spaces are defined to be embedded

subspaces of both Vm and V_.I. The next section discusses the role of the scaling function

in this requirement.

4.4 Scaling functions and Perfect Reconstruction

For perfect reconstruction, the choice of scaling function plays a key role in the ratio-

nal resolution analysis. The scaling functions are intrinsically related to the approximation

spaces. Thus, placing requirements on the approximation spaces will have repercussions

in the choice of scaling functions. We have already seen one constraint in Equation 4.31.

In this section, we show by example that the compactly supported scaling functions

which were described in the previous chapter do not lead to approximation spaces which

allow perfect reconstruction using the scheme described in the previous section. However,

we demonstrate that the reconstruction obtained from these scaling functions is still very

good. We conclude with a description of a class of scaling functions which lead to embedded

approximation spaces and provide an example.

We want to show by example that the compactly-supported scaling functions defined

previously do not satisfy the perfect reconstruction scheme of the previous section. To do
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Figure 4.4. Compactly Supported Scaling Function with p = 3 and N = 2 (0(1) vs. 1)

this, consider Equation 4.40 again. Suppose we are using a compactly supported scaling

function based on an integer p = M dilation. We can calculate the sum in Equation 4.40,

dilate it by 1/q, and compare it to the original scaling function. Consider the following

example.

Example 4-3 Consider the M = 3, N = 2 compactly supported scaling function 0b shown

in Figure 4.4. Define the approximation space Vo to be the span of its orthonormal integer

translates. Now suppose q = 2. With p = 3, we calculate the inner products required in

Equation 4.40 (See Appendix B for details). If this equation holds, then the scaling function

dilated by 2 is in Vo. Conversely, 4'oo should be in the space spanned by D2 
0 0o for n E Z.

In Figure 4.5, uwe graphically compare 0o0 and its projection onto the space spanned by of

D2 0 0n for n E Z. Although the tuwo scaling functions have the same basic shape, they are
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obviously not equivalent. For instance, they have unequal supports. From this we conclude

the approximation spaces V1 and V1' are not embedded.

C

Because the approximation spaces based on compactly-supported scaling functions

are not embedded, we cannot hope to obtain perfect reconstruction. However, because the

shapes of the two scaling functions in the previous example are similar, we can expect a

reasonable reconstruction. In order to see this effect of this approximation, we return to

approximation coefficients and discrete filter operations.

The multiresolution analysis, rational or otherwise, is a linear transformation. As

with most discrete processing systems, the impulse response is very important in that it

provides a great deal of information about the characteristics of the system. Consider the

following example.

Example 4-4 Suppose we have a set of approximation coefficients

co" = 1(4.41)
0 otherwise

and u! want to rationally approximate these coefficients and then reconstruct. Assume that

p = 3 and q = 2 and the scaling function associated with the analysis is the one given in the

previous example (Figure 4.4). We decompose this set of approximation coffficier,'. using

the coefficients in Table 4.1 which were calculated as in Appendix B. The resulting approx-

imation coefficients are shown in Table 4.2. The detail coefficients are generated using

the optimized detail filter coefficients of Example 3-3. These detail coefficients generated

from Ih co, are shown in Table 4.3.

Now. the cek are filtered via the coefficients in Equation 4.40 for the scaling fum'tion

given shown in Figure 4.4. These filter coefficients arc given in Table 4.4. The y..ult-
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Table 4.1. Rational Approximation Filter Coefficients
n h(n)

-4 -0.000287420672395512
-3 -0.0440663791657491

-2 0.00572865007567187
-1 0.305000213846163

0 0.734891371897753
1 0.908269395408422
2 0.582716289665621
3 0.126436376018966
4 -0.0975392317518494
5 -0.0709325019117585

6 -0.000764787823073089
7 3.7 7 671951090657e-05

Table 4.2. Rational Approximation Impulse Response Coefficients with p = 3 and q = 2
k Clk

-2 -0.000764787823073
-1 0.126436376018966
0 0.734891371897753
1 -0.044066379165749

Table 4.3. Detail Coefficients

-1 -0.73479360808553 -0.33431907117540
0 -0.07789569612441 0.41307668343873

4-17



ing coefficients are approximate approximation coefficients and we denote them by e.

The true approximation coefficients, c'j, are found by filtering the co" with the M = p

Table 4.4. Approximate Reconstruction Filter Coefficients
n h(n)
-2 -0.000258795002995204
-1 0.0051580987167051
0 0.487272389375389
1 0.830841375288264
2 0.220942569573341
3 -0.128892692818564
4 -0.000849382759163267

integer-resolution approximation filter. Both sets of coefficients are given in Table 4.5.

The similarity of the two sets of coefficients is a good indication of the degree of perfect

reconstruction which is obtainable in this case. Combining the e'j, in Table 4.5 with the

detail coefficients in Table 4.3, we obtain co, which is an approximation of the original

co,,. The eo are given in Table 4.6 and shown graphically in Figure 4.6. The values of the

eo,, are identically zero outside the range of n shown in the figure and listed in the table.

Thn impulse response shown in Figure 4.6 is non-causal (has non-zero values for n < 0)

because the filters used to obtain it are non-causal. In practice, we would be constrained to

causal filters and would naturally expect a delay in the impulse response.

Table 4.5. Comparison of True Approximation Coefficients and Approximate Approxi-
mation Coefficients

1 C11 cll
-3 0.0 6.495975913362887e-0 7

-2 0.0 -0.017089903223261
-1 0.2389641719057618 0.2727245348859523
0 0.3383860972838639 0.3221324728780859
1 0.0 -0.0004174849486161193
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Table 4.6. Impulse Response Coefficients for a Rational Resolution Using the M = 3.,
R = 2 Scaling Function

n EO.
-9 2.198147937372851e-07
-8 3.448299084782647e-07
-7 4.698450232192443e-07
-6 -0.00578283042412773
-5 -0.009071908848033937
-4 -0.01236098727194014
-3 0.007340162900056513

-2 0.0171263011937004
-1 0.02691243948734121
0 1.002567516653402
1 -0.00705767970676463
2 -0.01668287606694384
3 -0.004025304999031559
4 -0.0009776385395248652
5 0.002070027919981815
6 -9.976394502917046e-05
7 -1.941892920712597e-05
8 6.092608661491856e-05
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Figure 4.6. RRA Reconstruction of Impulse Function

Although the approximation coefficients have significant differences, the effect on the

reconstruction is minimal in this case. To illustrate this point, Figure 4.7 shows a sample

signal and its reconstruction using the coefficients given above. Any differences between

the two are not graphically detectable.

We mentioned earlier that the rational resolution approximation will generally have

more than one impulse response. For simplicity, we demonstrated only one of the three in

the previous example. Figure 4.7 indicates that the other two responses are similar to the

one demonstrated in the example.

For the particular choice of scaling function in the previous example, the quality of the

approximate reconstruction is comparable to the exact reconstruction. Cursory inspection

of the actual values of the sample signal indicate exact agreement to 6 decimal places. To
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investigate whether the choice of scaling function has any effect on this performance, the

same experiment was performed with the M = 3, R = 3 scaling function, which is more

regular than the one in Example 4-4. The scaling function is shown in Figure 4.8 and the

comparison between it and the 1/2-dilated linear combination given by the inner product

calculations of Equation 4.40 is shown in Figure 4.9. The impulse response reconstruction

is given in Table 4.7 and the sample signal reconstruction is shown in Figure 4.10.

1.4
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0.8

0.6

0A

0.2

0

-0.2

.OA

-0.61
0 l 2 3 4

t

Figure 4.8. Compactly Supported Scaling Function with p = 3 and R = 3 (0(1) vs. t)

When impulse response coefficients in Table 4.6 and Table 4.7 are compared, it is

apparent that the coefficients in Table 4.6 are closer to a true impulse response. This

would seem to indicate that the approximation is better with the lower regularity scaling

functions. A quick inspection of the actual reconstructed samples in Figure 4.10 reveals

that this is true. The approximate values differ somewhat from the actual values although

these differences are not detectable in Figure 4.10.
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Table 4.7. Impulse Response Coefficients for a Rational Resolution Using the M = 3,
R = 3 Scaling Function

n ZO.

-15 2.521503816700972e-08

-14 5.252538602629477e-08
-13 8.779863683804167e-08
-12 2.364535890286332e-05

-11 4.916486647168172e-05
-10 8.211815480890592e-05

-9 0.002455484054276105
-8 0.005030148725821753
-7 0.00834900132830889
-6 -0.001828456187451866
-5 -0.01244507728606293
-4 -0.0268146562922356
-3 -0.009806152342156149
-2 0.006368699629402036

-1 0.02988496789836725
0 1.015390801838894
1 0.004469421168744825
2 -0.0134326466588571

3 -0.006385114138053594
4 -0.00366493783613446
5 0.002158128377207594
6 4.950872631421729e-05
7 0.0001268319880036728
8 -0.0001776711990643005

9 9.029619674973409e-05
10 5.573695713435322e-05
11 -5.928195953517768e-05
12 5.267473524307781e-09
13 3.251115519546015e-09

14 -3.457748942040833e-09
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While the analysis of the reconstruction properties using compactly supported scaling

functions is a topic for further investigation, we suggest that the reconstruction quality

decreases with regularity of the scaling functions. The actual choices for the rational

dilation factor p/q might also affect the reconstruction quality and it, too, is a topic for

further investigation.

4.5 Spline-based Scaling Functions and Perfect Reconstruction

In the previous section we generally discussed the class of compactly supported scal-

ing functions and showed we could get reasonable reconstruction results using the scheme

we developed earlier. In this section, we want to further comment on the perfect re-

construction conditions and discuss the class of spline-based scaling functions which are

suitable for achieving perfect reconstruction.

When the approximation spaces are defined as in Figure 4.3, we have shown it is

necessary to have V' as an embedded subspace of both V -1 and Vm for perfect recon-

struction. For the compactly supported scaling functions in this thesis, this condition is

not met. The exception to this is the scaling function which is the characteristic function

X[0o1). We cannot say categorically that there are no other compactly supported scaling

functions which lead to perfect reconstruction but such an investigation is beyond the

scope of this thesis.

Recall how the compactly-supported scaling functions were developed. We needed

to develop a set of projection operators which satisfied certain orthonormality conditions.

We cast the projection operators in terms of discrete filters and from these the scaling

functions were generated. The approximation spaces were then defined in terms of the

scaling functions. That is, we defined an approximation space as the closed linear span of

integer translates of the scaling function we had defined. In all cases, the scaling function

was defined before the approximation space.
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But the constraints for perfect reconstruction in the rational resolution scheme are

placed on the approximation spaces, not directly on the scaling functions. Hence, if we

want to satisfy conditions on the approximation spaces, we can start with those spaces

and not with the scaling functions. In other words, we can define the approximation

spaces to satisfy the rational resolution perfect reconstruction constraints, then find the

corresponding scaling functions, not vice versa. Consider the following simple example:

Example 4-5 Consider the space of piecewise constant functions. An orthonormal basis

for this space is the familiar characteristic function X[0,1). If we let

V0 = span{ tIf,n+1)}flEZ (4.42)

then for all rational dilation factors p/q, it is easy to see that the space embedding condition

for RR perfect reconstruction will hold because we can write

""[X,(t+')) E Xfn,n+l) (4.43)
n=pl

and
q(,+1)

X[qIq(1+1)) E X[n,n+-1) (4.44)
n=qI

As a general class of functions, consider the B-splines. A B-spline is a piecewise

polynomial function such that at its nodes (or knots), only B - 2 continuous derivatives

exist. Further consider the B-splines which have knots at the integers. For instance, the

linear splines (2-splines) are continuous at the integers, but its first derivative generally does

not exist. Example 4-5 illustrates the simplest case of B-spline functions: the piecewise

constant functions. These functions are not even continuous at the integers. The B-spline
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spaces are interesting because they satisfy the RR perfect reconstruction conditions. To

see this, consider the following example:

Example 4-6 Define the approximation space Vo to be the space of all linear splines in

L2(R). Assume we have a function 0 such that the integer translations of 0 form an or-

thonormal basis of Vo. For any rational dilation factor p/q, it is clear that we can write

((t/p) and 0(t/q) as a sum of O(t - n) because the p and q-dilated versions of 0 will also

be piecewise linear except their nodes (or knots) will occur at integer multiples of p and

q respectively instead of at every integer. Hence, conditions for RR perfect reconstruction

will be satisfied because the approximation spaces are embedded.

0

This example extends to any space of spline functions, but while the scaling function

5 can be found in a straightforward manner, it generally does not have compact support.

Hence, the approximation filter will not have compact support. Thins its implementation

will introduce errors because we would have to represent an infinite length filter with

a finite length approximation. Additionally, we cannot produce the spline wavelets by

Vaidyanathan's technique described in the previous chapter. This is a topic for future

investigation.

4.6 Frequency Domain Interpretation of the RRA

In this section, we detach ourselves from the mathematics of the rational resolution

analysis to investigate itA discrete-time signal processing characteristics. Throughout this

thesis we have cast the approximation and reconstruction operations in both tho integer

and rational multiresolution analyses as discrete filter operations. We have discussed the
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frequency characteristics of the filters for integer resolution analyses; this section discusses

the frequency domain interpretation of those for the rational resolution analysis.

We expressed the rational resolution approximation processing as an upsampling by

q, then filtering by h, followed by downsampling by p (see Figure 4.2). This sort of scheme

is typically used in discrete-time signal processing to do rational sampling rate changes.

The filter is used to prevent aliasing. See [17] for more details on rational sampling rate

changes.

For the integer resolution analysis based on a dilation of p, each successive approxi-

mation had the effect of a low-pass filtering operation. In terms of the frequency spectrum.

each approximation was effectively the lowest 1/p-th of the frequency spectrum of the pre-

vious approximation. For the rational resolution case, we can extend this idea and say

that each approximation is effectively the lower q/p of the spectrum of the previous ap-

proximation. It is easy to see the effects of a 1/p low-pass filter operation for the integer

case, but the rational p/q case takes a bit more explanation because of the upsampling.

When a discrete-time signal is upsampled by q, the sampling rate is effectively in-

creased by q. In terms of the actual signal, upsampling inserts q - 1 zeros between each

sample so that the sampling period T is effectively decreased to T/q. Compressing the

discrete-time axis by q has the effect of dilating the frequency axis by the same amount.

This is important when you consider the effect of the anti-aliasing filter h(Ph).

Suppose we have a discrete-time signal with sample period T1 which is band-limited

to its Nyquist frequency f, = 1/(2TI). If we define normalized frequency w such that

w 2=rfT (4.45)
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where T is the sample period, then w, = ir results 2 . Suppose we upsample this signal by q

so that the new sample period is T_2 = T1/q. The signal will be still be bandlimited to f.

but now, the corresponding normalized frequency will be w' = 7r/q.

If h(P/q) is a lowpass filter with a cutoff frequency w, = r/p, then the effective cutoff

of the signal in continuous frequency will be

fc = W C = qw_ . (4.46)

T2 TI

Substituting for ,.; in t-_rns cr f•,, we find

f, = Lf, (4,47)P

This implies that the ap,)roximation filter has an "effective" cutoff frequency of q times

that of hlI/i) so that we can interpret the entire rational approximation operation as keeping

the lower q/p of the input spectrum via a lowpass filter with cutoff at ,, = 7r(q/p). To

verify that the approximation filter W(P/M) is indeed a 7ri/p lowpass filter, consider Figure 4.11

which is the frequency response of the filter given in Table 4.1. The "extra- gain in the

filter (indicated by the magnitude at f = 0 being v/ and not 1) is to compensate for the

loss which occurs in the upsample operation. See [17] for details.

Compare this frequency interpretation with that of the integer resolution analysis.

For an integer dilation of p, the approximation filter is lowpass in that it passes the lowest

1/p of the input speclrum. For the rational dilation case, we see that the approximation

filter is again lowpass. but it trios to pass the lowest p/q of the input spectrum because

of the upsampling. Once again we see how the integer resolution analysis is just a special

case of the rational resolution analysis corresponding to q = I.

\'W' usu f here to denote continuous fre.quv.nc% We have used f previously in this t hesis t u denote both
coltinlnou, attn normalize.d frequency because we assu ned a unit sample period. We introdii t - lit r, to
avoid cooft.,iott and to be. (onsislte tt with discrete-tinme processing literaturc.
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Figure 4.11. Frequency Response for Table 4.1

4.7 Conclusions

We conclude this chapter with a summary of its major points. We described the

rational resolution approximation as a series of projections onto a set of non-embedded

approximation spaces. The basis function of one approximation space is simple a p/q

dilation of the basis function of the previous space. In this respect, the RRA is similar to

the IRA. We saw how the filtering operation for rational dilation factors was an upsampling

by q. a discrete filter operation. followed by downsampling by p. Reconstruction is more

complicated because the spaces are not embedded.

The reconstruction scheme involves a further projection of the rational approximation

onto a newly defined lower resolution approximation space I,". This space was defined to be

an embedded subspace of the original higher-resolution space so that the integer resolution

reconstruction technique could be used to reconstruct the function. We showed that a

necessary condition for perfect reconstruction was that the approximation space 1*,:, he an

enibeddld subspace of I,, and of VI.
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We demonstrated that the compactly supported scaling functions of previous chapters

did not in general lead to perfect reconstruction in the rational resolution scheme. However,

we presented examples which demonstrated that the approximate reconstruction was very

good for two particular compactly supported scaling functions. Thus, although we could

not get perfect reconstruction, compactly-supported scaling functions were still useful with

rational resolution analyses.

We described a set of approximation spaces which satisfied the RR perfect recon-

struction condition. The spaces of B-splines satisfy the conditions because they represent

functions whose break points or "knots" are defined at the integers. Integer dilations of

these functions will still have knots at integer values so that the approximation spaces

defined by the b-splines are embedded for all integer dilations, not necessarily restricted to

the integer dilation used to generate the scaling function. However, the scaling functions

generally do not have compact support and it is unclear at this time how the corresponding

B-spline wavelets can be generated.

The final section presented an interpretation of the rational resolution analysis in

terms of its frequency characteristics. We showed that the rational approximation is a low-

pass filtering operation like the integer approximations. The cutoff frequency is roughly

defined by the dilation factor. We use some of the frequency domain characteristics in

practical applications of the rational resolution analysis in the next chapter.
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V. Applications

5.1 Introduction

In this chapter we present some practical applications of the Rational Resolution

Analysis. Our main goal is to compare and contrast the RRA developed in previous

chapters with the conventional dyadic MRA on a variety test signals including human

speech. We want to investigate the time-frequency localization characteristics, the coding

potential, and sources of errors for the RRA with respect to the dyadic case. We find areas

where the RRA has advantages over the MRA and also identify areas where it falls short.

5.2 Time-Frequency Characteristics

Wavelet analysis was primarily developed to aid in the processing of non-stationary

signal-signals whose frequency characteristics are not constant with respect to the inde-

pendent variable (usually time or position). This section qualitatively investigates the

time-freqency processing characteristics of the RRA and compares it to the dyadic MRA.

We are specifically interested in the two methods' ability to localize frequency and whether

or not we can determine if one is better than the other in this respect.

Define a rectangular input sequence

rect(n) 1 = for n E {f0, 1,..., 399}
0 otherwise.

We decompose this sequence with both a dyadic MRA and an RRA with dilation factor

of 3/2. We use regularity based on N = 2 for both. The results of the decompositions are

presented in Figures 5.1-5.11; these require some explanation. The independent variable n

is increasing left to right along the bottom edge these images. The vertical axis indicates

increasing levels of decomposition and. thus, coarser resolution. Each horizontal band
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SShift

Figure 5.1. G~rey Scale Representatioii of Rect Function Detail Coefficient for .1 :3.
XN. 2, p = 3. q = 2. 5 levels. (Wavelet 1)

rep~resents tilie approximtat ion or det ail coefficients at that level. depending~p upon what

is being illustrated. The darker the block, the greater thle niagnit ude of Ihe coefficient.

Wh~ile corresponds to zero and solid black corresponds to tile coefljcient wvii! the greate~st

inagniiii(le at each resolution level. All other %,allies at that level are linearlY scaled bet weeni

zero and( this value. Thle height of each band is ind~ividuallv scaled 1o c-orresp~ond to

the dilat ion of tile basis funtction at that level. If we were to expres., thli vertical axis

logarithmically, the bands would have equal height. The ratio between xvidl li of adjacent

bands is determined by thle dilation factor.

Figures 5.1 and 5.2 are the detail coefficients for a rational resolution dlecomplositioni

of the redt function wilh Ii/)q = 3/2 axtd N = 2. Thle detail filters usePd ill tho decomiposit ion

are thle same stop-band op)timnized filt ers developed inl Example 3-3. The decontpoit ion

of the dyadic case is sho~vit inl Figure 5.3. We c-an observe several tlnimig about thlese

figures. First, it is apparenit that thie wavelets inl hoth the IIl.\ anld Nil?.\ highlight the
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Shift

Figure .5.2. Grey Scale Representation of Rect Function Detail C'oefficienit.- for AI 3.
N =2. p =3. q =2, 5 levels. (Wavelet 2)

Scale

Figinre 5.3. Grey Scale ReprCesentationl of Rect Function Del ail (oplcliujeti for .11 =2.

A' = 2. p = :1. q =2. 5 levels.
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Figure 5.4. Grey Scale Representation of Rect Function Approximation ('oeflicients for
Al = 3. N = 2. p = 3. q = 2, 5 levels.

high-frequency edges of the input signal. This verifies the high-pass nature ofithe scaling

filters. Second, it is not apparent whether one representation or the ot her better localizes

the edges of the input.

Before moving on. colwsider the RRA and MRA approximation coelici<'ii s which re-

sult from processing the rect input signal. These are shown in Figures 5.1 and 5.5 respec-

lively. They show similar b)ehavior in that the edges begin to blur as the deconposition

level increases.

Now consider a non-stationary signal such as a chirp. Define ani input ,ional

Sf sin(27r((n - 100)/100)3) n E {100. 101 ..... 2991
cltirn(I) =/ (5.1)

0 ot herwike

This signal is shown in Figure 5.6. Although the signal k a set of ditcrv, points, thle

signal shown is continuous so that its structure is apparent. This sigial l, til, e-varvitII
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Figure 3..Grey Scale Representation of Rect Function Approxirniaiion (Coefficients for
Al 1 2. N 2. p =2. q =1. 5 levels.

Figure 5.6. Chirp Signal



Scale

Shift

Figure 5.7. Grey Scale Representation of Chirp Function Detail ('oefficiewii for .11 :3.
N = 2 . p = 3. q = 2. 5 levels. (Wavelet 1)

frequency so we would exp~ect this feature to appear in the dletail and approximation

coefficient s shown in Figures 5.7 - 5.11. Recall the wavelets used in the raiioiial resolutioni

decomposilion correspond to detail filters which have been chosen to have mmiinimuni stop)-

hand energy. [his implies they have maximum pass-band energy andl. thus. have maximum

response to specific bands of the spectrum. Also, recall that these 1)ass-lballds were defined

to be adjacent to each other in the spectrum. Thus, since the chirp hias mioiotonicallvý

increasing frequency. we exp~ect to see the two wavelets responding to part., of the chirp

which are next to each other at each resolution level. This is indeed the cawe as seen in thle

third andl fourth level coefficients in Figures 5.7 and 51.8. The image of 1l1o Seconid wavelet

responds (more black) to the higher frequencies and the first wavelet respoind, more to the

lower freqjuencies. If the two images are overlaid, it is evident that 1 he two wavelet s are

responing to adjacent parts of the cii rp.
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Scale

Figure .5.8. (;re.N Scale Representation of Chirp Function Detail Coefficients for .113
N =2. p = 3. (1= 2. 5 levels. (WAavelet 2)

Scale

Figuire 5.9. G re , Scale Rlepresent at ion of Chirp Function Detail (oefficivni,i l'r M1 2.
N =2.1 p =2. q = 1. 5 levels.
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Figure 5.10. Grey Scale Represeiitat ion of Chirp Function Approximal ion C'oefficient s for
A] 3. N =2. p =3. q =2. 5 levels.

Figure .5.11. Grey Scale Representation of Chirp Function Approximation ('oefficients for

Jl = 2. N = 2.1) = 2. q = 1. 5 levels
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This is a very important characteristic because it demonstrates the ability of the

RRA to localize specific frequencies better than the corresponding MRA. The resolution

in response of the MRA in Figure 5.9 does not allow a specific frequency or scale to be as

accurately determined as with the RRA in this example. However, we must also point out

that it takes two wavelets in this RRA case.

We should mention at this point that it is inaccurate to compare the decomposition

images of the RRA and MRA for the same signal. We know that because the approx-

imation spaces are not embedded for the RRA, the spaces spanned by the wavelets are

not orthogonal between levels: the detail information is over-specified. Consequently, the

decomposition images shown in this chapter must be interpreted with this in mind. For

the most part, it does not pose a problem for getting the general charaterislics from the

images, but it becomes important when we make comparisons between the two types of

analysis. To illustrate this, consider the effective sampling rates for the various levels of

decomposition for the two wavelet analyses presented above. Vor the dyadic case, the ef-

fective sampling rate is given by (1/2)' whereas in the rational case the effective sampling

rate is given by (1/3)(2/3)"1. For four levels of decomposition, this corresponds to 1/16

for the dyadic and 8/81 for the rational.

5.3 Speech Processing

We performed several experiments with speech signals to attempt to highlight differ-

ences between the MRA and the RRA. We also used these signals to compare the results

of processing with different dilation factors. We sought to be able to determine whether

speaker-dependent characteristics were present in the approximation and/or details of one

decomposition versus another of a different dilation factor.

For these investigations, we used clean (without noise) sampled speech data from

three speakers, 2 male and 1 female, from the TIMIT data base. The test sentence was
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the same for each of the speakers. Each speech signal was originally sampled at 16 Khz,

but was downsampled to 8 KHz to reduce the size of the data files. This made them more

manageable and decreased processing time for the investigations performed.

Our first investigation involved trying to determine whether the RRA could separate

the three speakers better than the MRA. The hypothesis was that the RRA provided a

better set of features for identification than did the MRA. One of the complaints of the

MRA is that significant information "fell between the cracks" of the detail and approxi-

mation spaces. That is, at a particular level of decomposition, a significant feature of a

signal is projected partly into the detail space and partly into the approximation space.

This diminishes its effectiveness as a feature because it could be overshadowed by other

information which lies squarely in one space or the other, but would otherwise not be as

significant. The RRA would not suffer from this as much because the resolution steps are

finer and because the detail spaces at each level are not generally orthogonal with the de-

tail spaces at other levels. Hence, if some important information fell "between" two detail

spaces or a detail space and approximation space, another detail space would highlight it

at either a previous or successive level of decomposition.

To investigate this, we assumed the information which was most significant for re-

construction was contained in the detail signals. By keeping some highest percentage of

the detail coefficients, we could compare the resulting reconstruction to the original signal

as a function of that percentage. The idea being that the reconstruction would be better

with the RRA because the most important information would be redundantly represented

in the detail coefficients and less affected by the thresholding.

In order to compare the reconstructions, we have used the metric defined by the 12

norm. It has been pointed out by Anderson[l] that this may not be a valid metric for

speech signals. However, we chose it because our goal for this test was reconstruction from
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a mathematical standpoint. The 12 norm is defined on sequences a E 12(Z) to be:

Ia= (ZIa.,I)2  (5.2)

and the corresponding metric (distance) for a, b E 12(Z) is

D(a,b) ( Iaan - bI2). (5.3)

For the purposes of comparison, we calculate normalized error by finding the distance

between the reconstructed and original sequences and dividing by the norm of the original

sequence.

For each speaker, the sentence was decomposed 3 levels for the MRA case and 5

levels for the RRA. The RRA used a dilation factor of 3/2 with M = 3 and N = 2

wavelets and scaling functions. The MRA also used N = 2 wavelets and scaling functions

so that the regularity between the two would be comparable. In this investigation, the

MRA and RRA were decomposed to different levels to that the effective sampling rates of

the approximations at the lowest level were the same. The effective sampling rate is given

by

= (q/p)"1 , (5.4)

where n? is the decomposition level. The sampling rate for the dyadic at m = 3 is 0.i250

and for the rational at m = 5 is approximately 0.1317. The threshold percent represents

the number of overall detail coefficients kept in the reconstruction, independent of level.

We mention this to avoid confusion with other thresholding techniques which are based on

the values of the coefficients. In this investigation, the percent represents the percentage

of all detail coefficients set to zero. A threshold of 90% implies that the the top 10'/'( of all

coefficients are unchanged, the rest being set to zero.

Figures 5.12 and 5.13 present the results of this investigation. The results demon-
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Figure 5.12. 5-level RRA Reconstruction Error for 3 Speakers
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Figure 5.13. 3-level MRA Reconstruction Error for 3 Speakers
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strate that both methods effectively separate the female speaker from the two males. How-

ever, the error for the RRA is worse than the MRA and the RRA does not appear to

separate the speakers better or worse than does the MRA.

As a follow-on investigation, we performed the same processing except that the RRA

was decomposed to 3 levels instead of 5. This is done so that the effective sampling rate of

the detail coefficients is equivalent. For the RRA, the effective sampling rate of the detail

coefficients is given by

rd = (11P). (q/p)'-l (5.5)

so that the effective sampling rate of the detail coefficient for the MRA and RRA for

3 levels of decomposition is 0.1250 and 0.1481 respectively. For the MRA, the effective

sampling rate depends only on level and not whether we are considering the approximation

and detail coefficients. This is caused by the symmetry of the decomposition. Figure 5.14

presents these results. These results are slightly better than those obtained with the

Female -
Male I ----
MaIe2-

0.8

, 0.6

1 0.4
0.2

90 91 92 93 94 95 96 97 98 99
Tbrhaold Peroent

Figure 5.14. 3-level RRA Reconstruction Error for 3 Speakers
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MRA. This indicates that overall reconstruction error might be linked more closely to the

effective sampling rated reduction of the detail coefficients rather than the approximation

coefficients.

These results are generally not encouraging, however. A possible explanation of the

ability to separate speakers by sex is that female speech generally has higher frequencies

than male speech. Consequently, it would make sense that the female speaker could be

separated because more of her signal would be contained in the details of the decomposition.

Since we are thresholding the detail coefficients, her speech is most affected, hence the

difference in relative error cmpared to the male counterparts. However, we must be

careful in drawing too many conclusions because we have used only three speakers in the

comparison.

To illustrate the effects of the choice of dilation factor on the separation of speakers,

we calculated the normalized reconstruction error for the female speaker and the first

male speaker as a function of both the dilation factor and threshold percent. We used

dilation factors of q = 5 with p E {6....,9} and q = 6 with p E {7.. .. , 11} which provides

a relatively large set (9 points) of rational numbers between I and 2. The number of

decomposition levels for each dilation factor was chosen so the effective sampling rate of

the approximation coefficients was approximately 0.10. This resulted in as many as 15

levels of decomposition for p/q = 7/6 to as few as four for p/q = 11/6. The results are

shown in Figure 5.15. Notice that we still see the obvious separation between the male and

female speakers. We can make some other observations also. One reason we might fail to

see any significant variation in two surfaces that might be used to distinguish speakers is

the low regularity of the scaling functions and wavelets used in the analysis. Also, notice

that the ripples in the surface indicate that the reconstruction error for dilations where

q = 5 is generally less than those dilation factors where q = 6. However, the deviations

are relatively small and for a given threshold percent, the error curve is generally constant
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accross all the dialations. This is a significant result: from a coding standpoint, we can

perform arbitrary rational sampling rate changes within the RRA framework and not

significantly increase the relative error.

5.4 Impulse Response Error Analysis

In this section we investigate the error associated with choice of dilation factor. We

want to determine general trends in reconstruction error as a function of the dilation

factor. To do this, we decompose and reconstruct an impulse signal for various rational

dilation factors and then calculate the relative error as a function of the dilation factor

and the impulse position. The impulse position affects the error because for an analysis

with rational dilation factor p/q, there will generally be p unique impulse responses and

each will have unique error contributions.

The investigation focuses on rational dilation factors p/q between 1 and 2. We first

investigate the case where we fix q = 6 and vary p E [7... 11]. We use N = 2 scaling

functions and wavelets. Figure 5.16 presents the results. Notice that the error curve for

each of the dilations generally has a minimum for impulse positions near the center of the

range [0.. .p]. Also notice that at the zeroth position, the dilation factors closer to unity

have the least error and that the error at zero position is an upper bound for all the other

errors. If this holds for all rational resolution analyses, then it becomes a very simple way

to calculate the worst-case reconstruction error.

Now we fix p = 11 and vary q E [6.. .10]. We again use N = 2 scaling functions

and wavelets. Figure 5.17 presents the results. The same trend as the previous figure

is observed. The dilation factors closer to unity yield the least error and almost perfect

reconstruction can be obtained for impulses near 4 and 5.

We conclude with two commcnts on this analysis. First., a quick investigation of Lhe

individual error contributions of the wavelets and scaling functions yields identical results.
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That is, when the RRA approximation coefficients projected from V,1 are compared to the

actual approximation coefficient projected from Vm-i, the errors were identical to those of

the reconstructed signal. This indicates that the overall error is attributable only to the

error in the projections from m to V,,, for the compactly-supported scaling functions in

this thesis; the detail coefficients contribute nothing to the error.

Second, the flat portions of the error curves in Figure 5.17 exist as roundoff error.

The machines used in this thesis have a 16-digit accuracy so that a squared error on the

order of 10"6 gives errors on the order of 10' when the square root is taken.

5.5 Conclusions

Ini this chapter we presented the results of several investigations on various input

signals including human speech. In general, we saw the performance of the RRA compare

favorably with that of the MRA. Although, we did not get good results for the speech

signals, we found a potential coding application in the relatively constant reconstruction

errors for a wide range of dilation factors. We also saw that the reconstruction error

of the MRA depended upon the choice of dilation factor and, in terms of the impulse

responses, depended upon the position of the impulse. We saw that the upper bound on

the reconstruction error was generally found for impulses at n = 0.
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VI. Conclusions and Rccommendat;ons

6.1 Introduction

This chapter provides a conclusion to this thesis. We summarize the major points

and evaluate how well the objectives of the thesis were met. Because most research efforts

raise more questions than they answer, we conclude with a brief description of some of

those issues and how they translate into areas for future research.

6.2 Major Points and Evaluation of Objectives

The main contribution of this thesis is the refinement of the theory and practical

implementation of a rational-resolution analysis. We have also demonstrated a technique

to generate families of compactly-supported scaling functions with an arbitrary degree of

regularity and an arbitrary resolution base. Throughout this thesis we have worked in

the domains of both the mathematical framework of multiresolution wavelet analysis and

multirated digital signal processing, thereby showing the relationship between the two.

Finally, we have presented some preliminary investigations into the applicability of the

RRA.

We can express the results of the thesis in terms of the specific objectives enumerated

in the first chapter. First, we have shown how the dyadic multiresolution analysis can be

extended to an arbitrary integer dilation factor (or resolution base) using the theory of

perfect-reconstruction multirate filter banks. We have shown the major difference between

the two is the number of basis functions necessary to span L2(R). In the dyadic (M = 2)

multiresolution analysis, there is a single wavelet whose dilations and translations form an

orthonormal basis for L2(R). For an arbitrary integer multiresolution analysis, there are

M - 1 wavelets dilated and translated by powers of M required to span L 2(R).
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The second objective was to see if a rational resolution analysis theory could be im-

plemented. This thesis has demonstrated this objective. We have implemented a rational-

resolution analysis which is similar to the dyadic multiresolution analysis in regard to its

implementation. However, unlike multiresolution analyses (dyadic or arbitrary integer res-

olution base), the RRA implemented here does not require that the approximation spaces

be embedded. In fact, it is this requirement that had thus far prevented a feasible RRA

from being developed. We have described the perfect-reconstruction property of the RRA

including a description of a class of scaling functions (the B-splines) which allows perfect

reconstruction. We have demonstrated near-perfect reconstruction using the compactly-

supported scaling fmuctions.

The last objective was to determine the feasibility of the implementations of both

integer and rational-resolution analyses and their applicability to real-world problems.

The implementation of the integer-resolution analysis is effectively that of a perfect-

reconstruction multirate filter bank. We have also cast the implementation of the RRA in

terms of discrete-time filter operations with rational sampling rate changes. In both cases,

the feasibility is automatic and also, the implementation is relatively fast and efficient. The

application of the RRA to speech processing gave only mixed results at best. We attribute

this not to a failure of the RRA, but to the way RRA was applied to the problem. There

are many areas of speech processing which could possible benefit from the RRA. Those

area, 1ecome an area for further research.

6.3 Recommendations

There are several recommendations we can make concerning this research.

e For the classes of compactly-supported scaling functions generated in this thesis,

we have shown that perfect reconstruction is not possible. It would be useful to

investigate whether there exist compactly-supported scaling functions which do yield
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perfect reconstruction and whether they can generated. Perhaps the solution to this

problem lies in generating scaling function which are based not on a single dilation

factor p, but on two dilation factors p and q.

"* We did not demonstrate perfect reconstruction using the spline wavelets for lack of

a technique to build the detail filters. For the compactly-supported scaling function,

we used a modification of Vaidyanathan's technique which is applicable only to FIR

filters. It would be useful to develop a technique to find the spline detail filters.

"* We mentioned earlier that the choice of wavelets is not unique so that we are free

to choose which wavelets we use ',n a particular analysis. This suggests that wavelet

choice can be optimized with respect to some criteria. Vaidyanathan suggests an

optimization based on the frequency content of the detail filters, but we can optimize

the filters (and thus the wavelets) based on any criteria. Specifically, for a given

resolution base and regularity, there might be a choice of wavelets better suited for

one application than another. For example, in a image processing application, one

set of wavelets might be better for segmenting out one object as opposed to another.

This might have applications in target recognition.

"* For the speech signals used in the previous chapter, it would be useful to do a

listening test to get a more subjective evaluation of the reconstruction quality due

the the various dilation factors and thresholding levels.

"* Basis function regularity greatly impacts the coding and reconstruction of speech

signals. In our examples on speech, we have used N = 2 scaling functions and

wavelets. An obvious area for research is to investigate the effects of filter regularity

on the reconstruction and coding.
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6.4 Conclusion

The ultimate goal of this research was obtained. The theory of a multiresolution

analysis based on an arbitrary rational dilation factor has been developed and implemented.

Its main advantage over the dyadic multiresolution analysis is its flexibility in the choice

of dilation factors and its ability to exploit information which might "fall between" the

approximation and detail space in the dyadic case.
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Appendix A. Generating Scaling Functions and TJavclets

A.1 Introduction

This appendix describes the generation of the compactly supported scaling functions

and wavelets used in this thesis for inner product calculations and plotting. It is loosely

based on the graphical construction technique described in Daubechies[6] and the reader

is referred to her paper for a more rigorous treatment.

A.2 Mathematical Foundations

Recall the relationship between the scaling function 0 and the scaling filter H:

¢(A1-'t) = M'/1 2 E h(n)O(t - n) (A.1)
n

where 11 is the integer dilation factor and H(f) = M- 1 1 2 E" h(n)-i21•n. In the frequency

domain

ý(Mf) = t(f)•(f) (A.2)

where H(f) = M-11 2 • h(n)-i 2W71. By iterating Equation A.2, we obtain an expression

for ý in terms of the infinite product:

ýwf = (~ H(M..)f)) ý(O). (A.3)

With (O) = f (t)dt = 1, the scaling function is completely defined by the scaling filter.

We can write a similar definition in the time domain by expressing Equation A.1 recursively.

Notice that the recursive definitions in both time and frequency domain imply that

0 is defined by an infinite recursion. It is impossible to do this so we typically use a finite

number of recursions to create an approximation, 77, to the true scaling function 0. We
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recursively define q1 in a manner similar to 0:

%k(t) A lI/2 Z h(n)77jI(Mt - n). (A.4)
n

By choosing an appropriate seed function 770, it can be shown that y., = €. Daubechies[6]

has shown this convergence when the seed function is the characteristic function X[-1/2,1/2).

There are other seed functions which work, but the characteristic function will be the most

useful for the purposes of this thesis.

We can graphically show the construction of a scaling function by letting 17o =

X[-1/2,1/2) and applying Equation A.4 for several iterations. Figure A.2 shows 2 levels

of iteration for Daubechies' 4-coefficient scaling function. Notice that the basic structure

of the scaling function begins to emerge at the first iteration. By choosing an appropriate

level of recursion, the scaling function can be approximated with an arbitrary degree of

accuracy. However, it is important to realize that we do not have a closed form for 0 and

the best we can do is approximate it with 77. This is usually adequate for generating plots

but can lead to problems when trying to perform inner products and other calculations.

The wavelet(s) 1,' are generated in a similar manner as k. Recall the definition of

!b(M- 1 t) = M112 -g(n)O(t - n). (A.5)
n

By following a similar development as above, we can write an approximation for 0 by

substituting 7/k for 0 in the above expression.

A.3 Scaling Function and Wavelet Support

The support of a particular compactly-supported scaling function depends on the

dilation factor Al and the length of the scaling filter. From Figure A.2, you can see

the support of the function increases by M-k for each iteration level k. This increase is
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bounded in the limit by the following expression:

supp(O) C [0,s], (A.6)

where

m-\ N -M -1(A7s=+ (N-i1) (ZM) M M- (A7

M is the (integer) dilation factor, and N is the degree of the zero of the scaling filter in the

frequency domain. In general, N is the number of filter coefficients divided by the dilation

factor. For example, the support of the scaling function in Figure A.2 with M = 2 and

N = 2 will be 3.0, which agrees with Daubechies' result obtained in [6].

A.4 Plotting

An algorithm to calculate the r1k follows directly from the graphical construction

method described in Figure A.2. The approximations at successive iteration levels are

represented as arrays of points. Each point represents the amplitude of a characteristic

function of a certain width. The width between each point is a function of the iteration

level and the dilation factor. For example, the characteristic function corresponding to the

zeroth iteration in Figure A.2 can be simply represented with a single element array. The

next iteration would yield an array of 4 values and the width of each element would be

one half the width of the previous element. In general, the element width ratio between

iteration levels will be 1/M so that the width of an element at a particular iteration level

is M-k. Each iteration level will have an array of values corresponding to the 'q at that

iteration.

For plotting purposes, it is usually sufficient to use 7 or 8 iterations. However, for

inner product calculations, we want as many iterations as possible to improve accuracy. For

large iteration levels, the implementation described above requires a great deal of computer
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memory. The number of points at a particular iteration level is approximately exponential

with the iteration level. Calculating 77k for large k can quickly exceed the memory capacity

of a machine. One way to avoid this is to implement the processing recursively.

Equation A.4 can be implemented recursively so that the particular value of iqk can

be calculated without explicitly calculating all values of Ilk-1. For a given iteration level,

both the number of points and the width of each element can be calculated. Let Atk be

the elemental width of Ilk and 1(77k) be the number of points. Notice that

sk = 1(77k) - Ark (A.8)

with l(77k) recursively defined as

1(7o= 1

1(77k) = M . (1(77k-l) + N - 1) (A.9)

and Atk = M-k, so that the support of 7)k is given by

supp(r7k) C [0, sk]. (A.10)

If 1l&(i. Atk) is evaluated for i E (0,1(i) - 1], these points are equivalent to those of

77k calculated in the non-recursive manner.

The recursive technique is not without its limitations. While the non-recursive tech-

nique is plagued with memory problems, the recursive technique requires a great deal of

processing time. The amount is combinatorially dependent on the number of coefficients,

the integer dilation factor, and the iteration level.

One possible solution to this dilemma is a hybrid technique which incorporates the

best of both. Instead of recursively calculating every 7lk, this technique retains an 7ip in
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computer memory so that during the recursive calculation of ik, only k -p recursion levels

are required. In other words, the calculation recurses down to level p where the values are

looked up in an array instead of any further time-consuming recursion. The level p can

be determined by the amount of memory available on a particular machine. Notice that

p = 0 would correspond to the total recursion technique.

While this technique would provide some speedup compared to the total recursion

technique, it is not clear whether the amount of time still required would make it a practical

alternative to the all-memory version. The amount of time required might depend more

on the number of points to calculate rather than the levels of recursion.
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Appendix B. Calculation of Inner Products

B.1 Introduction

This appendix discusses the procedure used in this thesis for calculating inner prod-

ucts between scaling functions of different dilations. This calculation is necessary in order

to generate the coefficients of the filter operator which takes a function from one rational

approximation space to the next. For the most part, filter coefficients corresponding to

integer dilation factors are not found by calculating inner products between dilated scaliig,

function. In general, their calculation can be done more efficiently and more accurately

via solution of a set of filter constraint equations. For the rational dilation case, it is not

apparent how to formulate a similar set of constraint equations; hence, the filter coefficients

are found by the inner product method discussed below.

B.2 Scaling Function Approximations and Integration

The inner product between two functions in L2(R) is defined as

,00

(f, g) = f(x)g*(x)dx. (B.1)

The asterisk on g(x) denotes complex conjugation. It is usually omitted when all the

functions are assumed to be real, which they are in this thesis. To calculate inner products

with scaling functions, we are forced to use the approximations rk because it is generally

not possible to calculate the compactly supported 0(t) exactly (see Appendix A). However,

given

Jra 1k = (B.2)
kcoo

we can pass the limit inside the inner product integral to obtain

Jim k(pt - n)>k(qt - k) = (pt - n)O(qt - k)dt (B.3)
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by use of the Lebesgue Dominated Convergence Theorem (LDCT)[22]. We can apply the

LDCT because the scaling functions have finite energy, Equation B.2 holds pointwise, and

we can always find another finite-energy function f such that

f(t) > ir7k(pt - n)>7k(qt - k)l (B.4)

for all k sufficiently large.

The approximation of 0 discussed in Appendix A is very useful for the inner product

calculations. It is a piecewise constant function with each piece having a constant width'.

This allows us to calculate integrals with the 71k exactly. The LDCT ensures that values of

these integrals will converge to the values of the same integrals using the exact function ¢.

B.3 Inner Products betwcen Scaling Functions with Different Dilations

Filter coefficients are defined in terms of inner products between scaling functions of

different dilations and integer shifts. For example, the coefficients for a particular scaling

filter with an integer dilation factor M can be expressed as

h(n) = (0(.), M- /12 0(M- . -n)). (B.5)

To implement this calculation, the scaling function approximation 77 and its dilated version

are aligned and the corresponding piecewise products are summed. The result is divided

by the width of a piece of the undilated version. This is illustrated in Figure B.3 for

M = 2. The figure shows the first two elements of both the dilated and undilated 77. The

width of an undilated element is Ax. Notice that the boundaries of the elements in the

figure are aligned. This will always be the case when the dilation factor is an integer and

'The shape of the approximation of O(t) will depend upon the generating function used to construct
the approximation. For instance, if a piecewise linear function was used, the approximation of 0 would
also be piecewise linear. We assume the approximation is piecewise constant to simplify calculations. See
Appendix A for a more detailed description of this.
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Figure B.1. Graphical Representation of Inner Product Calculation (Integer Dilation)

A 3

I I

0

Figure B.2. Graphical Representation of Inner Product Calculation (Rational Dilation)

it allows you to set the elemental width for the summation to be the elemental width of

the undilated 77.

When the dilation factor is not an integer, the calculation becomes slightly more

complicated. Figure B.3 shows the first two elements in an inner product calculation when

the dilation factor is ;. Notice that the boundaries of the two scaling functions are generally

not aligned. In order to do the calculation, either the boundaries must be aligned or the

sum taken over a new elemental width. It is more practical to sum over a new elemental

width when the dilation factor is a rational number.

This width is Auw in Figure B.3. For an arbitrary rational dilation factor p/q.

Aw = Ax/q so that an integral number "fits" exactly within Ax and p/q Ax (q and
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p respectively). The width Ax will depend entirely upon the resolution of the particular r/

approximation of q5. The calculation of the inner product can be done now by multiplying

the two 77's pointwise at integer multiples of Aw, summing those products, then dividing

the sum by Aw. It is a good idea to evaluate 77 at a small offset to avoid numeric problems

at the edges between elements. Specifically, if c = Aw/2, evaluating 77(i • Aw + c) will

ensure you are "in the middle" of the width of each elemental piece.
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Appendix C. Compactly-Supported Scaling Function Coefficients

This Appendix contains the filter coefficients which correspond to the compactly-

supported scaling functions described in this thesis. M is the dilation factor of the filter

and N is the degree of the zero in the frequency domain. In general, the number of

coefficients equals N • M.
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Table C.1. M= 3 Scalin Function Coefficients
N n h(n) N n h(n)
N=1 0 0.5773502691896258 12 -0.004390717677049114

1 0.5773502691896258 13 -0.0117630392913734
2 0.5773502691896258 14 0.005939350606862516

N=2 0 0.3383860972838639 N=6 0 0.04641991275107735
1 0.5308361870137393 1 0.1639465729921871
2 0.7232862767436145 2 0.4066715005201326
3 0.2389641719057618 3 0.5656198750350017
4 0.0465140821758866 4 0.5822303477386939

5 -0.1459360075539887 5 0.2439043899487991
N=3 0 0.2031351458445597 6 -0.03360979671294295

1 0.4231503391080737 7 -0.2535074168509084
2 0.707315562281546 8 -0.0827402704145488
3 0.4462253778312972 9 -0.001567872609927079
4 0.1986450810341451 10 0.1160507314856822
5 -0.1772352755829245 11 0.003460975861427684
6 -0.07201025448623133 12 0.0004017081380376375
7 -0.04444515095259269 13 -0.03676774192974475
8 0.04726998249100431 14 0.00823961325938988

N=4 0 0.123406981953495 15 0.0000864425883298631
1 0.3178956389295323 16 0.005397775753665225
2 0.6213168633509574 17 -0.002185939985627229
3 0.5614260707071095 N=7 0 0.02863469944250044
4 0.3689078320251187 1 0.1145779336727611
5 -0.0862580790830778 2 0.3130369746334096
6 -0.1277798008064663 3 0.5052370391891819
7 -0.1337592046407223 4 0.6066049784880124
8 0.05875903404126836 5 0.389300653623506
9 0.02029701733548439 6 0.0928372491743659

10 0.02430600287569403 7 -0.2229533413299443
11 -0.01646754911952597 8 -0.1671131569370772

N=5 0 0.07550761756142822 9 -0.07162196707431434
1 0.2308607082172001 10 0.1226804243338364
2 0.5130453503201613 11 0.04678622725673165
3 0.5926979649102604 12 0.02814719913757102
4 0.5034315642711169 13 -0.05893429635971259
5 0.07274582768780658 14 -0.002075105196602145
6 -0.1155977613104273 15 -0.006590670189590142
7 -0.2180464638838977 16 0.01777849645238094
8 0.006923562601957478 17 -0.003400563925014199
9 0.02913316570543634 18 0.0007067195113203001

10 0.07286749987660257 19 -0.00240392606630167
_ 11 -0.02130382202713998 1 1 20 0.00081523973607586
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Table C.2. M = 4 Scalin Function Coefficients
N n h(n) N n h(n)
N=1 0 0.5 2 0.261409705243678

1 0.5 3 0.4621234160454917
2 0.5 4 0.5034896944442804
3 0.5 5 0.4974275790863239

N=2 0 0.2697890493972125 6 0.3582663910214228
1 0.3947890493972125 7 0.02935921938985153
2 0.5197890493972127 8 -0.06205420421900776
3 0.6447890493972127 9 -0.1720416625275725
4 0.2302109506027876 10 -0.1653977530t53066
5 0.1052109506027876 11 0.0311291404573808

6 -0.01978904939721243 12 0.01081024188096791
7 -0.1447890493972125 13 0.05413053935774315

N=3 0 0.1508314546357131 14 0.05420808584702153
1 0.2819260000350612 15 -0.0299790295109188
2 0.4442705454344095 16 -0.001415646351253019
3 0.6378650908337577 17 -0.0086466114650548
4 0.4102152723259671 18 -0.00848642904691611
5 0.2730261815272712 19 0.007367253618095049
6 0.07333709072857486 N =6 0 0.02837982990998122
7 -0.1888520000701211 1 0.084920390919197
8 -0.06104672696167835 2 0.1894452880035414
9 -0.05495218156233073 3 0.3634158417256748

10 -0.01760763616298289 4 0.4630341033971846
11 0.05098690923636504 5 0.521603688112835

N=4 0 0.0857141205095909 6 0.4581682609563594
1 1.1931389929529531 7 0.1884297474496925
2 0.3491797139433843 8 0.03064209572041676
3 0.5616487834808844 9 -0.151511509208909
4 0.49550221952709 10 -0.2217355640601113
5 0.4145659963852793 11 -0.049638476.54759235
6 0.2190322276022618 12 -0.03004065049723437
7 -0.1145365868219623 13 0.06148349926787944
8 -0.0952932238298487 14 0.1006557092799305
9 -0.1306953948763132 15 -0.01252355607606148

10 -0.0827500202815714 16 0.00916526414636643
11 0.07198039995437733 17 -0.01940336450539526
12 0.01407688379316929 18 -0.03095839677252821
13 0.02299040553808251 19 0.01321015681716564
14 0.01453807873592691 20 -0.001180642679889488
15 -0.01909259661329754 21 0.00290729541121007

N=5 0 0.04916991424491036 22 0.004424702589612802
1 1 0.1291301555484611 1 1 23 -0.002893713372051781
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Table C.3. M = 5 Scaling Function Coefficiel-ts
N n h(n) N n h(n)
N=1 0 0.4472135954999579 8 0.1287274768405204

1 0.4472135954999579 9 -0.1279100395776194
2 0.4472135954999579 10 -0.07629704034654595

3 0.4472135954999579 11 -0.1133335965818052
4 0.4472135954999579 12 -0.1071173925933397

N=2 0 0.2291122486958535 13 -0.0469153020891433
1 0.3185549677958451 14 0.07800580122278156
2 0.4079976868958367 15 0.01065157792180793
3 0.4974404059958284 16 0.01919978418230139
4 0.5868831250958201 17 0.01929325164155149
5 0.2181013468041045 18 0.007354271535558496
6 0.1286586277041128 19 -0.02019486489967753
7 0.03921590860412127 N=5 0 0.0369295857643589
8 -0.05022681049587032 1 0.0864822003896527
9 -0.1396695295958619 2 0.1630385669708455

N=3 0 0.1226418655699167 3 0.2735816072515638
1 0.2115096557509954 4 0.4258097847282368
2 0.3182659897520724 5 0.4434891758283

3 0.4429108675731478 6 0.4572821120709057
4 0.5854442892142215 7 0.4051300667360689
5 0.3779406579655435 8 0.2626790616132943
6 0.2896477967033775 9 0.002712951480869918
7 0.1655778478012153 10 -0.03555071825051925
8 0.00573081125905639 11 -0.1281179958592347

9 -0.1898933129230993 12 -0.1669842966509591
10 -0.05336892803550154 13 -0.1209852164559706

11 -0.05394385695441473 14 0.04533689941226271
12 -0.03663024205332937 15 0.002437098513524916
13 -0.001428083332245672 16 0.0374251056022139

14 0.05166261920883635 17 0.0548-109596566571
N=4 0 0.06693186642815647 18 0.03745650892140251

1 0.136,1344418138782 19 -0.03475938322425875
2 0.2322802998208425 20 -0.0000915463544155504
3 0.3580,171492130495 21 -0.005857826702287961
4 0.5173126987544992 22 -0.0088018375203643
5 0.4459271914965655 23 -0.005518365829028025
6 0.4049129660856119 24 0.00811334310413951
7 0.3027574366309285
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Table C.4. Al = 5 Scaling Function Coefficients (continued)
N n h(n) N n h(n)
N=6 0 0.02051980444910794 15 -0.04003381202512913

1 0.05415134428079754 16 0.02688551062236399
2 0.1114576256922577 17 0.07989589044878187
3 0.2012850535192487 18 0.0805790774016231
4 0.3342197800496445 19 -0.02258740257607172
5 0.3996119866793481 20 0.01213573568549719
6 0.4564050600513028 21 -0.00839671639398176
7 0.4578850077299457 22 -0.02516131296018287
8 0.369949626302656 23 -0.02371218660701047
9 0.1505135168490312 24 0.01623310032102943

10 0.05658960992477092 25 -0.001609729213060351
11 -0.0831415456624427 26 0.00130994260250239
12 -0.1805630929152357 27 0.003699477504981466
13 -0.1841525577767697 28 0.003264582660787288
14 -0.02785215868011903 29 -0.003313240462983433
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Table C.5. M = 6 Scaling Function Coefficients
N n h(n) N n h(n)
N=1 0 0.4082482904638631 12 -0.04779458872577158

1 0.4082482904638631 13 -0.05069209412595289
2 0.4082482904638631 14 -0.04224936923547141
3 0.4082482904638631 15 -0.02246641405432692
4 0.4082482904638631 16 0.00865677141748031
5 0.4082482904638631 17 0.0511201871799504

N=2 0 0.2018407738385801 N=4 0 0.05572988604737748
1 0.2698821555825572 1 0.1050926383523982
2 0.3379235373265344 2 0.1705385816962569
3 0.4059649190705117 3 0.2539577544607309
4 0.474006300814489 4 0.3572401950275974
5 0.542047682558466 5 0.4822759417786338
6 0.2064075166252832 6 0.4080354889061076
7 0.1383661348813059 7 0.3847969539507332
8 0.07032475313732867 8 0.3246490761695098
9 0.002283371393351552 9 0.2219217404171019

10 -0.06575801035062568 10 0.07094483154818399
11 -0.1337993920946029 11 -0.1339517655825801

N=3 0 0.1049238332330833 12 -0.06405884983625399
1 0.1700677095768791 13 -0.0976286550965853
2 0.2465518162113377 14 -0.1056293478217274
3 0.3343761531364593 15 -0.082390812866354
4 0.4335407203522437 16 -0.02224293508512964
5 0.5440455178586907 17 0.0804844006672756
6 0.3511190459565507 18 0.00854176534668483
7 0.2888726750129367 19 0.01598735325736644
8 0.2039458434879964 20 0.01868998041987424
9 0.0963385513817303 21 0.01475960845243124

10 -0.0339492013058611 22 0.002306198973259885
11 -0.1869174145747785 23 -0.02056028639941723
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Table C.6. M = 6 Scaing Function Coefficients (continued)
N n h(n) N n h(n)
N=5 0 0.02995834418878171 3 0.02209470468778374

1 0.06414562072724588 4 0.02957020047325365
2 0.1142831722968498 5 0.040995665474175
3 0.1839227287556434 6 0.001156942247115822
4 0.2769310263586415 7 0.006300234219310142
5 0.3974898077578217 8 0.02078210190349239
6 0.4003041010582172 9 0.04385725021651865
7 0.4188327209012286 10 0.07316259259029323
8 0.3995957157224446 11 0.1044547456409219
9 0.3302762044714527 12 0.2746019565327771

10 0.1972972805099502 13 0.3407764197133076
11 -0.01417798838814122 14 0.388698033710682
12 -0.02066311814903798 15 0.4155336801713361
13 -0.0968092105655529 16 0.4210558109178919
14 -0.1440198478127712 17 0.408167458610194
15 -0.1466547658878028 18 0.1924213371475503
16 -0.0871836624059057 19 0.0966050895763715
17 0.05381380339945708 20 0.006591282579620384
18 -0.00193543121123696 21 -0.07235329535143365
19 0.0260631696830913 22 -0.1369374131080576
20 0.04568663517974514 23 -0.1863704076244232
21 0.04839816099185513 24 -0.07963276184528923
22 0.02440091724472992 25 -0.05654629332141781
23 -0.03736195152418986 26 -0.02979290274345203
24 0.0005843945785826144 27 -0.002277800234288918
25 -0.003984010280720485 28 0.02376657637685398
26 -0.007297384920941675 29 0.04704306688550553
27 -0.007694037865814324 30 0.01015052096474545
28 -0.003197271242108155 31 0.00806437466981969
29 0.00848461922037111 32 0.00499665091764906

N=6 0 0.00955029551298974 33 0.00139375107012385
1 0.01304846570266636 34 -0.002369476690216469
2 0.0169731241919911 35 -0.006042238426359006
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Table C.7. M = 7 Scaling Function Coefficients
N n h(n) N n h(n)
N=1 0 0.3779644730092272 14 -0.04356647929253521

1 0.3779644730092272 15 -0.04724346368787514
2 0.3779644730092272 16 -0.04320688740955714
3 0.3779644730092272 17 -0.03145675045758156

4 0.3779644730092272 18 -0.01199305283194779
5 0.3779644730092272 19 0.01518420546734398

6 0.3779644730092272 20 0.05007502444029371
N=2 0 0.1820860761697475 N=4 0 0.04827799192057586

1 0.2360810008853514 1 0.0855454129896321
2 0.2900759256009553 2 0.1334565988935662
3 0.3440708503165593 3 0.1931134868714732
4 0.3980657750321632 4 0.2656180141624482
5 0.4520606997477671 5 0.3520721180055859
6 0.5060556244633709 6 0.4535777356399815
7 0.1958783968394797 7 0.3781248366224261
8 0.141883472123876 8 0.3639696092803986
9 0.087888547408272 9 0.3255966481074033

10 0.03389362269266805 10 0.259700141386153
11 -0.02010130202293581 11 0.1629742773993588

12 -0.07409622673853972 12 0.03211324442974472
13 -0.1280911514541436 13 -0.136188769239979

N=3 0 0.0926794040869014 14 -0.05556962380363828
1 0.1429973444071671 15 -0.0850665076111028
2 0.2010288454010908 16 -0.0980592182612519
3 0.2667739070686723 17 -0.0912419440368151
4 0.340232529409912 18 -0.06130887322050606
5 0.4214047124248097 19 -0.004954194095036613
6 0.5102904561133648 20 0.0811279050568761
7 0.3288515482148742 21 0.007131268270212489
8 0.2822105922899487 22 0.01351595835064323
9 0.2201425150177076 23 0.01697044426986016

10 0.1426473163981501 24 0.01639278878876893
11 0.04972499643127694 25 0.01068105466827485
12 -0.0586244448829132 26 -0.001266695330717368
13 -0.1824010075444182 27 -0.02055239844730261
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Table C.8. M = 7 Scaling Function Coefficients (continued)
N n h(n) N n h(n)
N=5 0 0.02547293891079519 18 -0.1243336643910737

1 0.05075013025828832 19 -0.06176006119987676
2 0.0863334949637646 20 0.05893353785482703
3 0.1342373567811073 21 -0.004424054994927929
4 0.1966334590697807 22 0.01835674396538422
5 0.2758509647948308 23 0.03670396212991989
6 0.374376456526889 24 0.04586611620041481
7 0.367489241888185 25 0.04046204445618074
8 0.3863341750310027 26 0.01448090675427949
9 0.3813604927362881 27 -0.0387178154705925

10 0.3456128372275629 28 0.000960375347910158
11 0.2715061723060899 29 -0.002727828570636248
12 0.1508257833507116 30 -0.005802376452088698
13 -0.02527272268198999 31 -0.007350881781635344
14 -0.01153402814983906 32 -0.006303538438884565
15 -0.07474874768192308 33 -0.00143312069786309
16 -0.1206311003758032 34 0.00864501677298443

1 17 -0.1404009554253633 1 1 1
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Table C.9. M = 8 Scaling Function Coefficients
N n h(n) N n h(n)
N=1 0 0.3535533905932738 N=3 0 0.083658276085724

1 0.3535533905932738 1 0.1240047617351233
2 0.3535533905932738 2 0.1698755191125425
3 0.3535533905932738 3 0.2212705482179815
4 0.3535533905932738 4 0.2781898490514403
5 0.3535533905932738 5 0.3406334216129192
6 0.3535533905932738 6 0.4086012659024174
7 0.3535533905932738 7 0.4820933819199369

N=2 0 0.1669973759042 8 0.310134941408303
1 0.2111915497283592 9 0.273636143933663
2 0.2553857235525184 10 0.2260888030029839
3 0.2995798973766775 11 0.1674929186162655
4 0.3437740712008368 12 0.0978484907735067
5 0.3879682450249959 13 0.0171555194747075
6 0.4321624188491552 14 -0.07458599528013066
7 0.4763565926733144 15 -0.1773760534910087
8 0.1865560146890733 le -0.04023982690075423
9 0.1423618408649142 17 -0.04408751507551423

10 0.098167667040755 18 -0.04241093152225384
11 0.05397349321659584 19 -0.03521007624097416
12 0.00977931939243665 20 -0.02248494923167421
13 -0.03441485443172254 21 -0.004235550494354479
14 -0.0786090282558817 22 0.01953811997098512
15 -0.1228032020800409 23 0.04883606216434463
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Table C.10. M = 8 Scaing Function Coefficients (continued)
N n h(n) N n h(n)
N=4 0 0.04294578648476931 4 0.1484062411512839

1 0.07231622565417008 5 0.2041722742290823
2 0.1091519993131062 6 0.2724989773770527
3 0.1541436414275804 7 0.3549676353333151
4 0.2079816859635952 8 0.3415248451795527
5 0.2713566668871534 9 0.3593172076325466
6 0.3449591181642582 10 0.3610197867070042
7 0.4294795737609114 11 0.3423790453483093
8 0.3538254217040411 12 0.2987961795188312
9 0.344771731160197 13 0.2253271181980097

10 0.3188463088757665 14 0.1166825233822948
11 0.2739775529527471 15 -0.03277220991492413
12 0.2080938614931327 16 -0.005574944858665277
13 0.1191236325988996 17 -0.05883618537589542
14 0.00499526437204878 18 -0.1008959954806414
15 -0.1363628450854222 19 -0.1264098705399874
16 -0.0493475787629123 20 -0.1295154054463694
17 -0.07515734135924746 21 -0.1038322946179448
18 -0.0896196439430277 22 -0.04246233199825156
19 -0.0906628846162363 23 0.0620105889436502
20 -0.07621546148086722 24 -0.005921533591333628
21 -0.0442057726389109 25 0.01297857285096882
22 0.007437783807644039 26 0.02935037430356146
23 0.0807868097568001 27 0.04032140164366638
24 0.006129761167490422 28 0.04267391876561533
25 0.01162277513827403 29 0.03284492258067218
26 0.01517472634754502 30 0.006926143017217612
27 0.01609508082929956 31 -0.03933595697940006
28 0.01369330461753471 32 0.001180822955390681
29 0.007278863746248116 33 -0.001860270686163901
30 -0.003838775750562934 34 -0.004583404946991721
31 -0.02035014783890116 35 -0.006443096037894503

N=5 0 0.02234420088043657 36 -0.006807543423931084
1 0.04195406614387475 37 -0.00495862982441625
2 0.06866262998244083 38 -0.0000919212129218486

1 3 0.1037059101512808 39 0.00868333318272398
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Table C.11. M = 9 Scalin Function Coefficients
N n h(n) N In h(n)
N=1 0 0.3333333333333333 0 0.07669971772284562

1 0.3333333333333333 1 0.1099696509754184
2 0.3333333333333333 2 0.1473548105654401
3 0.3333333333333333 3 0.1888551964929107
4 0.3333333333333333 4 0.2344708087578302
5 0.3333333333333333 5 0.2842016473601987
6 0.3333333333333333 6 0.3380477123000158
7 0.3333333333333333 7 0.3960090035772827
8 0.3333333333333333 8 0.4580855211919972

N=2 0 0.1550206443672593 9 0.2941781119756248
1 0.1920576814042964 10 0.2646752825075191
2 0.2290947184413335 11 0.2269420003645157
3 0.2661317554783706 12 0.1809782655466145
4 0.3031687925154077 13 0.1267840780538147
5 0.3402058295524447 14 0.06435943788611809
6 0.3772428665894819 15 -0.006295654956474995
7 0.414279903626519 16 -0.085181200473968
8 0.4513169406635559 17 -0.1722971986663575
9 0.1783126889660744 18 -0.03754449636510948

10 0.1412756519290373 19 -0.04131160014957614
11 0.1042386148920001 20 -0.04096347759659503
12 0.06720157785496318 21 -0.03650012870616426
13 0.03016454081792608 22 -0.02792155347828484
14 -0.006872496219111069 23 -0.01522775191295661
15 -0.04390953325614811 24 0.001581275989820552
16 -0.0809465702931852 25 0.02250553023004668
17 -0.1179836073302223 26 0.04754501080772171
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Table C.12. M = 9 Scaling Function Coefficients (continued)
N n h(n) N n h(n)
N=4 0 0.03892712901139129 5 0.1584149525921297

1 0.06282088728945303 6 0.2083742732387508
2 0.0921852462314366 7 0.2679952819291707
3 0.1274774532081674 8 0.3383370222704727
4 0.1691547555904707 9 0.3203417820901251
5 0.2176744007491718 10 0.3367135860399202
6 0.273493636055095 11 0.3416453392429375
7 0.3370697088790671 12 0.3323742199103918
8 0.4088598665919126 13 0.3059341851997885
9 0.3336128405188941 14 0.2591559712148808

10 0.3276278770097143 15 0.1886670930056198
11 0.3093463378461969 16 0.0908918445684606
12 0.2773964809158649 17 -0.03794870115413573
13 0.2304065641062465 18 -0.001501570187173229
14 0.1670048453048523 19 -0.047038872731207
15 0.0858195823992283 20 -0.0849120904563847
16 -0.01452096672311143 21 -0.111662861735681
17 -0.1353885441746527 22 -0.1235279933617903
18 -0.04459211799952101 23 -0.116439460546701
19 -0.06726642877848832 24 -0.0860244069216378
20 -0.0817593902405704 25 -0.02760514453757423
21 -0.0866992602732459 26 0.06380084613539339
22 -0.0807142967640679 27 -0.006854205878511266
23 -0.06243275760055767 28 0.00910862314756855
24 -0.03048290067022208 29 0.0235492389364822
25 0.01650701613939987 30 0.03461931444124389
26 0.07990873494078699 31 0.04026730156110148
27 0.005385481800848524 32 0.03823843114160752
28 0.01015099781094619 33 0.02607471297461927
29 0.01356113949455029 34 0.001114935798149474
30 0.01515865948083395 35 -0.03950533270343115
31 0.01448631039897341 36 0.00131381514356832
32 0.01108684487814215 37 -0.001241865601837588
33 0.004503015547515254 38 -0.00362791614216551
34 -0.005722424963732404 39 -0.005496566558387706
35 -0.02004672402642617 40 -0.006449241668042838

N=5 0 0.02003351220860843 41 -0.006036561025236143
1 0.03579186252225289 42 -0.003758338920641535
2 0.05667876179579384 43 0.000936415618498908
3 0.0834992273191487 44 0.00864949882837498

1 4 0.117109081645667 1_1_ _
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Table C.13. M = 10 Scaling Fuction Coefficients
N n h(n) N n h(n)
N=1 0 0.3162277660168379 N=3 0 0.07114422411477666

1 0.3162277660168379 1 0.0991820366045694
2 0.3162277660168379 2 0.1303821267545305
3 0.3162277660168379 3 0.1647444945646601
4 0.3162277660168379 4 0.2022691400349579
5 0.3162277660168379 5 0.2429560631654242
6 0.3162277660168379 6 0.2868052639560583
7 0.3162277660168379 7 0.3338167424068614

8 0.3162277660168379 8 0.3839904985178331
9 0.3162277660168379 9 0.4373265322889726

N=2 0 0.1452331793562896 10 0.2803921713759507
1 0.1768559559579734 11 0.2559393229980493
2 0.2084787325596571 12 0.2251619192998104
3 0.240101509161341 13 0.1880599602812358
4 0.2717242857630247 14 0.1446334459423229
5 0.3033470623647084 15 0.0948823762830742

6 0.3349698389663924 16 0.03880675130348887
7 0.3665926155680761 17 -0.02359342899643391
8 0.3982153921697598 18 -0.0923181646166933
9 0.4298381687714437 19 -0.1673674555572879

10 0.170994586660548 20 -0.03530862947389135
11 0.1393718100588643 21 -0.03889359358578215
12 0.1077490334571807 22 -0.0393162800375042
13 0.07612625685549679 23 -0.03657668882905862
14 0.04450348025381313 24 -0.03067481996044419
15 0.01288070365212923 25 -0.02161067343 66179
16 -0.01874207294955454 26 -0.0093842492427107
17 -0.05036484955123827 27 0.006004452606408584
18 -0.0819876261529221 28 0.02455543211569622
19 -0.1136104027546058 29 0.04626868928515226
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Table C.14. M = 10 Scaling Function Coefficients (continued)
N n h(n) N n h(n)
N=4 0 0.0357790693211718 20 -0.04083679928820061

1 0.05569749441044538 21 -0.06088758428431618
2 0.07976433639592423 22 -0.07481767391215044
3 0.1082958230436259 23 -0.0816783848736904
4 0.1416081821195683 24 -0.080521033870852
5 0.1800176413897692 25 -0.07039693760558663
6 0.2238404286202469 26 -0.05035741277986717
7 0.2733927715770168 27 -0.01945377609560594
8 0.3289908980260989 28 0.02326265574523489
9 0.3909510357335097 29 0.0787405660407039

10 0.3164731351805834 30 0.004812360804177019
11 0.3124322783456108 31 0.00898557754597906
12 0.2991084484822011 32 0.01217265505175558
13 0.2755529622923021 33 0.0140573655554852
14 0.2408171364778582 34 0.01432348129115213
15 0.1939522877408066 35 0.01265477449273811
16 0.1340097327831202 36 0.00873501739422478
17 0.060040788306722 37 0.002247982229594825
18 -0.02890322898644371 38 -0.007122558767169427

_ 19 -0.1337710023944041 39 -0.01969283336208572
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Table C.15. M = 10 Scaling Function Coefficients (continued)
N n h(n) N n h(n)
N=5 0 0.01825316481863816 25 -0.1166304281090333

1 0.03126076932886969 26 -0.1033012088451528
2 0.04811319371493264 27 -0.0708559174025254
3 0.06935979201581777 28 -0.01599842954738051
4 0.0955815410471259 29 0.06475711561415665
5 0.1273910404010694 30 -0.007445332551242246
6 0.1654325124464666 31 0.006246811439950762
7 0.2103818023287509 32 0.0189848166178308
8 0.2629463779699623 33 0.02951995012477937
9 0.3238653300687631 34 0.03647698799679233

10 0.3026435480071967 35 0.0383542151631957
11 0.3175769936723825 36 0.0335234254470862
12 0.3240477251715959 37 0.02022992156497594
13 0.3201745541150132 38 -0.003407484872944622
14 0.3039498010062402 39 -0.03939647336298435
15 0.2732392952426608 40 0.001394609585293693
16 0.225782375115017 41 -0.000788523372513339
17 0.1591918878076512 42 -0.002881124130846402
18 0.0709541893986625 43 -0.004650066416809651
19 -0.04157085514071924 44 -0.005830601180903728
20 0.001381776241089483 45 -0.006126356597019323
21 -0.03806828496760772 46 -0.005209338062436231
22 -0.07203684527235055 47 -0.002719928197824462
23 -0.0981764637378433 48 0.001733113152756642

1 24 -0.1139499627682312 1 49 0.00857264892185734
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Table C.16. M = 11 Scaling Function Coefficients
N n h(n) N n h(n)
N=1 0 0.3015113445777636 N=3 0 0.06658894719044639

1 0.3015113445777636 1 0.0906314685753338
2 0.3015113445777636 2 0.1171658192542526
3 0.3015113445777636 3 0.146191999227203
4 0.3015113445777636 4 0.1777100084941847
5 0.3015113445777636 5 0.2117198470551982
6 0.3015113445777636 6 0.2482215149102427
7 0.3015113445777636 7 0.2872150120593191
8 0.3015113445777636 8 0.32870033S502427
9 0.3015113445777636 9 0.3726774942395661

10 0.3015113445777636 10 0.4191464792707365
N=2 0 0.1370506111717107 11 0.2683404520246002

1 0.1644607334060529 12 0.2476655314891714
2 0.1918708556,10395 13 0.2220069523656809
3 0.2192809778747371 14 0.1913647146541253
4 0.2466911001090792 15 0.155738818354509
5 0.2741012223434214 16 0.1151292634668275
6 0.3015113445777635 17 0.06953604999108532
7 0.3289214668121057 18 0.01895917792727797
8 0.3563315890464477 19 -0.03660135272459009
9 0.3837417112807897 20 -0.0971455419645233

10 0.4111518335151321 21 -0.1626733897925181
11 0.1644607334060526 22 -0.03341805463723713
12 0.1370506111717105 23 -0.03678565548669566
13 0.1096404889373683 24 -0.03766142704212383
14 0.0822303667030263 25 -0.0360453693035192
15 0.05482024446868417 26 -0.031937482270884
16 0.02741012223434192 27 -0.02533776594421677
17 0.0 28 -0.01624622032351841
18 -0.02741012223434225 29 -0.004662845408788307
19 -0.05482024446868439 30 0.00941235879997315
20 -0.0822303667030265 31 0.02597939230276605
21 -0.1096404889373686 32 0.0450382550995904S
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Table C.17. M = 11 Scaling Function Coefficients (continued)
N n h(n) N n h(n)
N=4 01 0.03323835505706048 22 -0.03779289273231257

1 0.05016659207376368 23 -0.05565017827871089
2 0.07032818481276115 24 -0.06879105524616591
3 0.0939496632098697 25 -0.07653593382727309
4 0.121257557200906 26 -0.07820522421456389
5 0.1524783967216869 27 -0.0731193366005698
6 0.1878387117080287 28 -0.06059868117788625
7 0.227565032095749 29 -0.03996366813902341
8 0.271883887820664 30 -0.01053470767655185
9 0.3210218088185881 31 0.02836779001698986

10 0.3752053250253446 32 0.07742341474905601
11 0.3017075461484975 33 0.004358336098835736
12 0.2989488945135434 34 0.00804603626346712
13 0.2889820050056997 35 0.01099220999978634
14 0.2711272878174995 36 0.01297032737197767
15 0.2447051531415028 37 0.01375385844422716
16 0.2090360111702481 38 0.01311627328071552
17 0.1634402720963095 39 0.01083104194562656
18 0.1072383461122186 40 0.006671634503144009
19 0.03975064341049972 41 0.0004115210174506223
20 -0.03970242581623751 42 -0.00817582844727006
21 -0.1318004513754971 43 -0.0193169,1382683486
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Table C.18. M = 11 Scaling Function Coefficients (continued)
N n h(n) N n h(n)
N=5 0 0.01683606451412131 28 -0.1080661539025414

1 0.02780185466777634 29 -0.0909617062960706
2 0.04173632948946605 30 -0.05800772206475813
3 0.0590287091320898 31 -0.006807099400134576
4 0.080088807379088 32 0.06516082529043388
5 0.1053470316444427 33 -0.007820367758597513
6 0.1352543829726773 34 0.004080497357108471
7 0.1702824560388567 35 0.01536517929480397
8 0.2109234391485835 36 0.02515638725060398
9 0.2576901142380059 37 0.03249445589852939

10 0.311115856873819 38 0.03633734539059219
11 0.287574313682633 39 0.03556064135665338
12 0.3011717418651756 40 0.02895755490425245
13 0.3083085027372334 41 0.01523892261882054
14 0.3076542456231692 42 -0.006966793436390617
15 0.2977962453251734 43 -0.03911350572021632
16 0.2772394021232571 44 0.001442821356839374
17 0.2444062417753798 45 -0.0004481680813412936
18 0.1976369155170801 46 -0.002292714917654592
19 0.1351892000620296 47 -0.003928128935157815
20 0.05523849760157873 48 -0.005171126286359851
21 -0.04412216419524384 49 -0.00581782949323717
22 0.003478512959986801 50 -0.00564376744721784
23 -0.03109458105382146 51 -0.004403875409191849
24 -0.06160595184871909 52 -0.0018324950095088
25 -0.0863998683156524 53 0.002356625752024798
26 -0.1036970375613464 54 0.00847033250614304
27 -0.1115946049100103
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Appendix D. Plots of Compactly-Supported Scaling Functions

This Appendix contains the plots of 77k which correspond to the scaling function

coefficients in Appendix C. In some of the plots, it appears the function does not go to

zero at its rightmost point. This is caused by using a finite iteration k. At higher iterations,

the function would converge toward zero, however, the number of plotting points required

would be impractical. In all of the following plots, 0(t) is on the vertical axis and t is on

the horizontal axis.
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Figure D.1. Scaling Function (77) for M = 3 and N = 2
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Figure D.2. Scaling Function (77) for M = 3 and N = 3
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Figure D.3. Scaling Function (777) for M = 3 and N = 4
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Figure D.4. Scaling Function (r/7) for M = 3 and N = 5
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Figure D.5. Scaling Function (777) for M = 3 and N = 6
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Figure D.6. Scaling Function (q7) for M = 3 and N = 7
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Figure D.7. Scaling Function (?I) for M = 4 and N = 2
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Figure D.8. Scaling Function (775) for M = 4 and N = 3
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Figure D.9. Scaling Function (%) for M = 4 and N = 4
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Figure D.10. Scaling Function (775) for M = 4 and N = 5
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Figure D.11. Scaling Function (775) for M = 4 and N = 6
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Figure D.12. Scaling Function (174) for M = 5 and N = 2

1.4

1.2

I

0.8

0.6

04

0.2

0

-0.2

.0.4

0 0.5 1 1.5 2 2.5 3 3.5

Figure D.13. Scaling Function (774) for M = 5 and N - 3
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Figure D.14. Scaling Function (774) for M = 5 and N = 4
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Figure D.15. Scaling Function (04) for M = 5 and N = 5
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Figure D.16. Scaling Function (714) for M = 5 and N = 6
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Figure D.17. Scaling Function (i4) for M = 6 and N = 2
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Figure D.18. Scaling Function (,q4) for M =6 and N =3
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Figure D.19. Scaling Function (774) for M = 6 and N =4

D-10



0.s

0.6

OA

0.2

0

.0.2

.0.4
0 1 2 3 45 6

Figure D.20. Scaling Function (174) for M =6 and N =5
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Figure D.21. Scaling Function (774) for A'! 6 and N =6
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Figure D.22. Scaling Function (r13) for M = 7 and N = 2
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Figure D.23. Scaling Function (r73) for Al = 7 and N = 3

D-12



1.4

1.2

0.8

0.6

/
0.4

//

-0.2

-0.6 I p

0 0.5 1 L,5 2 2.5 3 3.5 4 4.5

Figure D.24. Scaling Function (7a) for M = 7 and NA 4
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Figure D.25. Scaling Function (q3) for M = 7 and N = 5
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Figure D.26. Scaling Function (773) for M = 8 and N = 2
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Figure D.27. Scaling Function (173) for M = 8 and N = 3
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Figure D.28. Scaling Function (r) for M = 8 and N = 4
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Figure D.29. Scaling Function (r73) for M = 8 and N = 5
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Figure D.30. Scaling Function (,qa) for M = 9 and N = 2
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Figure D.31. Scaling Function (173) for M = 9 and N = 3
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Figure D.32. Scaling Function (773) for M = 9 and N = 4
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Figure D.33. Scaling Function (773) for M = 9 and N = 5
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Figure D.34. Scaling Function (t3) for _M = 10 and N = 2
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Figure D.35. Scaling Function (773) for M = 10 and N = 3
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Figure D.36. Scaling Function (773) for Al = 10 and N 4
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Figure D.37. Scaling Function (173) for M = 10 and N = 5
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